

Portable Diode Laser-Based Sensor for ¹³CO₂/¹²CO₂ Isotopic Ratio Measurements

M. Erdelyi, R.F. Curl and F.K. Tittel,

Rice University Houston, TX

fkt@rice.edu http://www.ruf.rice.edu/~lasersci/

- Motivation and Technology Issues
- Infrared Diode Laser-based Gas Sensors
- Performance Characteristics of mid-IR Sensor

Motivation for Isotopic Ratio Measurements

- Volcanic gas emission studies. (CO2 H₂O, HCl, SO₂, HF, H₂S, CO), eg Colli Albani; Solfatara; Mammoth Mt., Long Valley Caldera, CA (north of L.A.)
- Atmospheric Chemistry [Monitoring of C_v gases: CO_2 , CO, CH_4 ...]
- Combustion diagnostics
- Non-invasive medical diagnostics (NO, CO, CO,, NH₃)
- Biology (Photosynthesis)

Solfatara Crater near Pozzuoli (Naples)

Isotope Ratio Strategy

Isotopic ratios are stated in δ units defined for carbon as:

 $\delta^{13}C = \{ [^{13}C/^{12}C]_{sample} / [^{13}C/^{12}C]_{sid} - 1 \} \cdot 1000 \ (^{0}/_{00})$

For carbon isotopes the most common standard is the Pee Dee Belemnite dolomite carbon standard $[^{13}C/^{12}C]_{PDB} = 0.011237$

To detect a δ value with an accuracy of 1 $^{0}/_{00}$ requires a measurement of absorbance at the 10-5 level when detecting two absorption lines of ~ equal intensity.

Isotope-Ratio Measurement Techniques

- Mass spectrometry (Precision: < 0.1per mil)
- Gas chromatography (GC-IRMS)
- · Nuclear magnetic resonance spectrometry
- FTIR Spectrometry (~0.1-0.2 per mil)
- · Infrared absorption spectroscopy Infrared heterodyne ratiometry Laser optogalvanic spectroscopy TDLAS spectroscopy: 3.35 µm (~0.3mil)

Absorption Spectroscopy

Beer - Lambert's Law 1(v)=10 -0 -a(v) -P. L

α(v) - absorption coefficient [cm⁻¹ atm⁻¹]; L = path length [cm] v - frequency [cm⁻¹]; P_a- partial pressure [atm]

Molecular Absorption Coefficient

 $\alpha(v) = C \cdot S \cdot g(v - v_0)$

C - total number of molecules of absorbing gas/atm/cm3 [molecule·cm3 -atm-1] S - molecular line intensity [cm -molecule-1]

 $g(v\cdot v_0)$ - normalized lineshape function [cm],(Gaussian, Lorentzian, Volgt)

Labview Processing of CO₂ Spectra at 4.3μm 7.33 A # 4 A . de de de de ja d (前) 的 (前) 前 (.

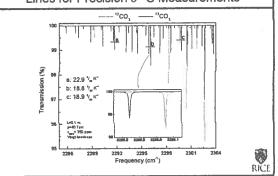
Future improvements

- Modular assembly, fiber coupled, ultra compact
- Source and detector (open path)
- Thermal management
- Solid state thermoelectric cooler
- Replace DFG source by 4.35 µm Sb diode or QC-DFB laser

Summary

- Diode Laser Based Trace Gas Sensors

 - Compact, tunable, robust (alignment insensitive), fieldable

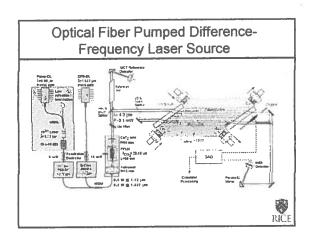

 High sensitivity (<2⋅10-⁴ to 10 ⋅5) and selectivity (10-300 MHz)

 Fast data acquisition and analysis

 - Detected trace gases:NH₃, CH₄, H₂CO, NO₂, N₂O, H₂O, CO₂, CO, NO, HCl, SO₂, C₂H₅OH, **isotopic species of ^{12,13}C**, 16,17,18O, 35,37Cl
- Applications in Trace Gas Detection
 - Environmental monitoring: H₂CO, CO, CH₄ (NASA, NCAR, NOAA, EPA)
 - NOAA, EPA)
 Industrial process control and chemical analysis
 Medical diagnostics (NO, CO, CO₂)
- Future Directions
 - · Fiber lasers and ampliflers
 - Longer mid-IR wavelengths with orientation patterned GaAs and QC lasers, detection of complex molecules
 Cavity enhanced and cavity ringdown spectroscopy

HITRAN Simulation of Suitable CO₂ Absorption Lines for Precision δ¹³C Measurements

Wide Range of Gas Sensor Applications


- Urban and Industrial Emission Measurements
 - Industrial Plants Fenceline perimeter monitoring
 - Combustion Diagnostics
- Automobile
- Rural Emission Measurements
- Agriculture
- · Environmental Monitoring
 - Atmospheric Chemistry Volcanic Emissions
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Diagnostic and Industrial Process Monitoring
 - Petrochemical and Semiconductor Industry
- Medical Diagnostics

Design Features of CW DFG Sensor

- · Adequate Mid-infrared DFG Power
- · High Sensitivity (ppb concentrations)
- High Selectivity (<30 MHz)
- Wavelength Tunable (Single or Multiple Trace Gases)
- · Fast Data Acquisition and Analysis
- Room Temperature
- Non-invasive, Point or Remote Monitoring
- · Compact, Lightweight and Robust
- Power Efficient
- No Consumables, Low Maintenance and Cost Effective

134.2

Portable Diode Laser-Based Sensor for ¹³CO₂/¹²CO₂ Isotopic Ratio Measurements

M. Erdelyi, R.F. Curl and F.K. Tittel,

Rice University Houston, TX

fkt@rice.edu http://www.ruf.rice.edu/~lasersci/

- Motivation and Technology Issues
- Infrared Diode Laser-based Gas Sensors
- Performance Characteristics of IR DFG Sensor
- Summary

Motivation for Isotopic Ratio Measurements

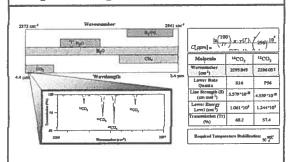
- Volcanic gas emission studies. (CO₂ H₂O, HCl, SO₂,HF, H₂S, CO), eg Colli Albani, Solfatara, Long Valley Caldera, CA
- Atmospheric Chemistry [Monitoring of C_v gases: CO₂, CO, CH₄...]
- Combustion diagnostics
- Non-invasive medical diagnostics (NO, CO, CO₂ NH₃.)
- Biology (Photosynthesis)

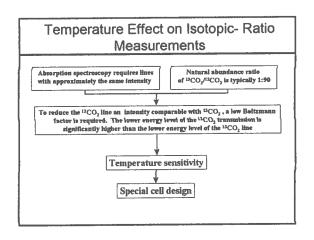
Solfatara Crater near Pozzuoli (Naples)

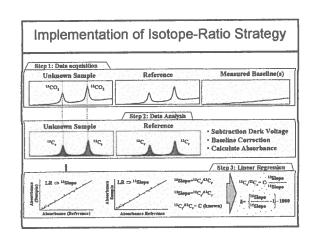
Isotope Ratio Strategy

Isotopic ratios are stated in δ units defined for carbon as:

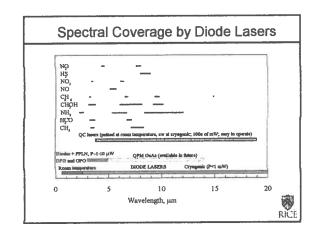
 $\delta^{13}C = \{ [^{13}C/^{12}C]_{sample} / [^{13}C/^{12}C]_{std} - 1 \} \cdot 1000 \ (^{0}/_{00})$

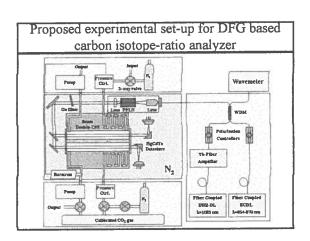

For carbon isotopes the most common standard is the Pee Dee Belemnite dolomite carbon standard ${}^{13}C/{}^{12}C]_{PDB} = 0.011237$

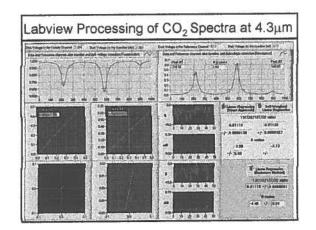

To detect a δ value with an accuracy of 1 0 / $_{00}$ requires a measurement of absorbance at the 10^{-5} level when detecting two absorption lines of \sim equal intensity.


Isotope-Ratio Measurement Techniques

- Mass spectrometry (Precision: < 0.1per mil)
- Gas chromatography (GC-IRMS)
- · Nuclear magnetic resonance spectrometry
- FTIR Spectrometry (~0.1-0.2 per mil)
- Infrared absorption spectroscopy
 Infrared heterodyne ratiometry
 Laser optogalvanic spectroscopy
 TDLAS spectroscopy: 3.35 µm (~0.3mil)


²CO₂ and ¹³CO₂ HITRAN spectra at 4.3 μm


Absorption Spectroscopy Absorber Gee, Liquid or Solid Beer – Lambert's Law I(v)=I₀··e··a(v)·P₀L a(v)·absorption coefficient (cm¹ atm¹]; L – path length [cm] v·frequency [cm⁻¹]; P₀· partial pressure [atm] Molecular Absorption Coefficient a(v) = C·S·g(v-v₀) C·total number of molecules of absorbing gas/atm/cm³ [molecule·cm³ ·atm¹] S· molecular line intensity [cm·molecule¹] g(v·v₀)·normalized lineshape function [cm], (Gaussian, Lorentzian, Voigt)


Design Features of CW DFG Sensor

- · Adequate Mid-infrared DFG Power
- High Sensitivity (ppb concentrations)
- High Selectivity (<30 MHz)
- Wavelength Tunable (Single or Multiple Trace Gases)
- Fast Data Acquisition and Analysis
- Room Temperature
- Non-invasive, Point or Remote Monitoring
- Compact, Lightweight and Robust
- Power Efficient
- No Consumables , Low Maintenance and Cost Effective

CO₂ Dual Absorption Cell

Summary

- Diode Laser Based Trace Gas Sensors
 Compact, tunable, robust (alignment insensitive), fieldable
 High sensitivity (<2*10⁻⁴ to 10⁻⁵) and selectivity (10-300 MHz)
 Fast data acquisition and analysis
 Detected trace gases: NH₃, CH₄, H₂CO, NO₂, N₂O, H₂O, CO₂, CO, NO, HCI, SO₂, C₂H₅OH, Isotopic species of ^{12,13}C, ^{16,17,18}O₃, ^{35,37}Cl
- Applications in Trace Gas Detection
 - Environmental monitoring: H₂CO, CO, CH₄ (NASA, NCAR, NOAA, EPA)
 - Industrial process control and chemical analysis
 Medical diagnostics (NO, CO, CO₂)
- Future Directions

 - Fiber lasers and amplifiers
 Longer mid-IR wavelengths with orientation patterned GaAs and QC lasers, detection of complex molecules

 - Cavity enhanced and cavity ringdown spectroscopy

Future improvements

- Modular assembly. fiber coupled, ultra compact
- Source and detector (open path)
- Thermal
- management Solid state thermoelectric cooling
- Replace DFG sours by 4.35 µm Sb dlo or DFB-QC laser

Wide Range of Gas Sensor Applications

- Urban and Industrial Emission Measurements
 Industrial Plants Fenceling perimeter monitor

 - Combustion Diagnostics
- Automobile
- Rural Emission Mea rements
 - Agriculture
- Environmental Monitoring
 - Atmospheric Chemistry
 Volcanic Emissions
- Spacecraft and Planetary Surface Monitoring
- · Crew Health Maintenance & Life Support
- Diagnostic and Industrial Process Monitoring Petrochemical and Semiconductor Industry Medical Diagnostics

