Wide Range of Gas Sensor Applications - Urban and Industrial Emission Measurements - Industrial Plants - Combustion Sources - Automobile - Rural Emission Measurements - Agriculture - **Environmental Monitoring** - Atmospheric Chemistry Volcanic Emissions - · Spacecraft and Planetary Surface Monitoring - Crew Health Maintenance & Life Support - Chemical Analysis and Industrial Process Control - Semiconductor Industry - Medical Applications | Main Components | | Trace Components | | |-----------------|--------|------------------------------------|----------| | Nitrogen | 78% | Methane | 1.7 ppm | | Oxygen | 21% | • CO | 0.4 ppm | | Water | 0.8% | N₂O | 0.3 ppm | | CO ₂ | 0.03 % | • O ₃ | 0.03 ppm | | | | • | | ## Spectral Coverage by Diode/QC Lasers HIS NOI NO OH CHOH NH1 H2CO 15 20 0 10 #### Key Characteristics of Quantum Cascade Lasers - Laser wavelengths cover entire range from 3.4 to $17\mu \text{m}$ determined by layer thickness of same material - Intrinsically high power lasers (determined by number of stages) CW: 0.2W @ 80 °K, ~100 mW single frequency Pulsed: 0.5W peak at room temperature, ~15 mW avg. @ 300 °K - High Spectral purity (single mode) - Wavelength tuning by current or temperature scanning - High reliability: low failure rate, long lifetime, robust operation and extremely reproducible emission wavelengths pholos/ # Motivation for CH₄ and N₂O Detection - Contribution to global warming - Important in tropospheric and stratospheric chemistry - Emitted by agricultural sources - CH₄ leaks from gas pipelines #### Summary - QC-DFB Laser Based Trace Gas Sensors - Compact, tunable, CW or pulsed, robust High sensitivity (<10⁻⁴) and selectivity (<50 MHz) Fast data acquisition and analysis Detected trace gases: CH₄, N₂O, H₂O, NO, CO₂, NH₃, and C₂H₅OH Isotopic Compositions - Current Applications in Trace Gas Detection - CH₄: NOAA, NASA-JPL, and gas industry NH₃: NASA-JSC, semiconductor industry, combustion diagnostics - Future Directions - More efficient suppression of optical interference fringes Pulsed quasi room temperature operations - Detection of complex molecules Cavity enhanced spectroscopy Medical Diagnostics: NO, CO, CO₂ and NH₃