

Wide Range of Gas Sensor Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources
 - Automobile
- Rural Emission Measurements
 - Agriculture
- **Environmental Monitoring**
 - Atmospheric Chemistry
 Volcanic Emissions
- · Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Chemical Analysis and Industrial Process Control
- Semiconductor Industry
- Medical Applications

Main Components		Trace Components	
Nitrogen	78%	 Methane 	1.7 ppm
Oxygen	21%	• CO	0.4 ppm
Water	0.8%	 N₂O 	0.3 ppm
CO ₂	0.03 %	• O ₃	0.03 ppm
		•	

Spectral Coverage by Diode/QC Lasers HIS NOI NO OH CHOH NH1 H2CO 15 20 0 10

Key Characteristics of Quantum Cascade Lasers

- Laser wavelengths cover entire range from 3.4 to $17\mu \text{m}$ determined by layer thickness of same material
- Intrinsically high power lasers (determined by number of stages) CW: 0.2W @ 80 °K, ~100 mW single frequency
 Pulsed: 0.5W peak at room temperature, ~15 mW avg. @ 300 °K
- High Spectral purity (single mode)
- Wavelength tuning by current or temperature scanning
- High reliability: low failure rate, long lifetime, robust operation and extremely reproducible emission wavelengths

pholos/

Motivation for CH₄ and N₂O Detection

- Contribution to global warming
- Important in tropospheric and stratospheric chemistry
- Emitted by agricultural sources
- CH₄ leaks from gas pipelines

Summary

- QC-DFB Laser Based Trace Gas Sensors

 - Compact, tunable, CW or pulsed, robust
 High sensitivity (<10⁻⁴) and selectivity (<50 MHz)
 Fast data acquisition and analysis
 Detected trace gases: CH₄, N₂O, H₂O, NO, CO₂, NH₃, and C₂H₅OH
 Isotopic Compositions
- Current Applications in Trace Gas Detection
- CH₄: NOAA, NASA-JPL, and gas industry
 NH₃: NASA-JSC, semiconductor industry, combustion diagnostics
- Future Directions
 - More efficient suppression of optical interference fringes Pulsed quasi room temperature operations

 - Detection of complex molecules Cavity enhanced spectroscopy Medical Diagnostics: NO, CO, CO₂ and NH₃

