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Abstract 

We report sensitive spectroscopic detection 
of formaldehyde using a guided wave 
difference frequency spectrometer with 
tunable output near 3.5 µm. A dual-beam, 
rapid-scan measurement system allowed 
real-time acquisition of normalized direct 
absorption spectra.  



         Motivation 
 
 

Need for compact room-temperature mid-IR sources:  
 
        Trace gas detection        Chemical analysis 
        Industrial process control           Environmental monitoring 
        Combustion diagnostics       Atmospheric chemistry  
        Rural emission studies       Medical diagnostics 
   
 
 
 

Output:  > 10 µW at 2 to 5 µm (room temperature),  
  diffraction-limited, linewidth < 100 MHz 
 
Absorption sensitivity: 2 x 10-4 



Introduction 
Mid-infrared laser absorption spectroscopy is a promising 
technique for environmental trace-gas detection because many 
important air contaminants have strong absorption bands in that 
spectral region.  To access the 3 to 5 µm spectral region a 
convenient technique is difference frequency mixing in a 
nonlinear optical material, which allows the frequency shifting of 
readily available near infrared diode lasers.  Periodically poled 
LiNbO3 (PPLN) has desirable characteristics for such difference 
frequency mixing, including engineerable phase matching and a 
high nonlinear coefficient (deff).  The use of a tapered waveguide 
in PPLN, leads to an enhancement of the DFG conversion 
efficiency of PPLN [1,2] compared to bulk PPLN  
(0.6 %. W-1 :WG PPLN [3] vs 0.1 %. W-1 Bulk PPLN [4]). 
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PPLN GRATING PERIOD: 19.2 µm 
PROTON EXCHANGE: 36 hours at 160oC in benzoic acid 
ANNEAL:  38 hours at 340oC in air 

NUMBER OF SPATIAL MODES (ESTIMATED) 
  INPUT OUTPUT 
at 790 nm     3     27 
at 1096 nm     1     12 
at 2830 nm     0       1 

Waveguide design 
 



DFG spectrometer configuration 
 The DFG spectrometer employed in this work uses two 

commercial semiconductor lasers: a master oscillator power 
amplifier tunable from 775 to 795 nm (‘pump’), and a grating-
stabilized tapered high-power oscillator at 1010 nm (‘signal’).  
To simulate operating conditions expected of a compact low-
power instrument, both lasers were operated at power levels 
below 150 mW.  Each laser beam passed through an optical 
isolator, a half-wave plate and a telescope, emerging as a 
collimated, vertically polarized beam of near circular symmetry.  
The telescopes were adjusted such that the emerging beam 
diameters were roughly equal (~2.2 mm) for optimal 
simultaneous coupling into a waveguide.  The laser beams were 
combined by a dichroic beamsplitter and focused at the input 
face of a channel waveguide array by a microscope objective.  
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Dual beam spectroscopy 

Dual beam spectroscopy was used to acquire high sensitivity 
absorption spectra. To acquire the reference and signal channels 
a beam splitter and two photovoltaic InSb detectors were used. 
Repetitive frequency scanning of 0.4 cm-1 was achieved by the 
use of a 200 Hz triangular wave voltage modulation applied to 
the piezo element of the external cavity diode pump laser.  Data 
was acquired by the use of two miniature PCMCIA 16 bit A-D 
cards with a sampling rate of 120 kHz. To allow simultaneous 
acquisition of the detector dark voltages in every frequency 
sweep, a beam chopper was operated synchronously with the 
frequency modulation. 
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PUMP: 28 mW 
SIGNAL: 35 mW @ 1010 nm 
L = 12 mm 
Λ = 19.5 µm 

Guided and unguided idler in 
PPLN waveguide 
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Interference-free window for  
simultaneous detection of CH4 and H2CO 

CH4: 27 cm path, 20 torr, 30 averages, 
 S/N=1600 (64 dB) 

H2CO: 5 cm path, 0.5 torr,  
30 averages, sweep rate 190 Hz 

2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time, ms

 - l
n (

Sig
na

l/R
efe

ren
ce

)

CH 4 2831.92 cm -1

H2CO  2831.64 cm -1



Low-level detection of formaldehyde  
(detection limit 540 ppb*m) 
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Conclusions 
•  Results demonstrate the feasibility of using diode-
pumped guided-wave difference frequency generation for 
trace-gas detection  

 
•  A waveguide DFG conversion efficiency of 0.25 % W-1cm-2 
has been demonstrated 
 
• A high-resolution, real-time dual beam spectrometer 
system has been realized 
 
•   H2CO detection sensitivity of 540 ppb.m 
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