

Interband cascade laser based Quartz Enhanced Photoacoustic sensor for multiple hydrocarbons detection

Angelo Sampaolo^{a,b}, Sebastian Csutak^c, Pietro Patimisco^{a,b},
Marilena Giglio^{a,b}, Giansergio Menduni^{a,d}, Vittorio Passaro, Frank K. Tittel^b, Max
Deffenbaugh^c and Vincenzo Spagnolo^{a,b}

^aPolySense Lab - Dipartimento Interateneo di Fisica, Politecnico and University of Bari, Via Amendola 173, Bari, Italy; ^bRice University, Department of Electrical and Computer Engineering, 6100 Main Street, Houston, TX 77005, USA; ^cAramco Service Company, 16300 Park Row Dr, Houston TX, 77084 USA ^dPhotonics Research Group, Dipartimento di Ingegneria Elettrica e dell'informazione, Politecnico di Bari, Via Orabona 4, Bari, 70126, Italy

Motivations

• Oil&Gas industry: methane propane (C3) and butane (C4) detection to predict productio and assess raw material quality reservoirs. Isotope ratios sucl rock characterization.

• Petrolchemical Industry: Nat distillates from petroleum refin materials for the production polymers and detergents;

 Safety: toxic gas emissions refining processes for safe work

Quartz Enhanced Photoacoustic detection: QEPAS

- Quartz Tuning Fork (QTF) as a resonant acoustic transducer
- Optical radiation is focused between prongs of QTF ($\sim 300 \ \mu m$)
- Modulated absorption is induced to create an acoustic wave
- Resonant mechanical vibration is excited by the acoustic wave
- Piezo-current $\propto \alpha \times P \times Q \times \epsilon$

Why QEPAS for downhole hydrocarbon monitoring?

- Quartz tuning fork (QTF): Rugged transducer quartz monocrystal; can operate
 in a wide range of pressures and temperatures
 - Immune to environmental acoustic noise, sensitivity is limited by the fundamental thermal QTF noise
 - Frequency and spatial selectivity of acoustic signals
 - Resonant frequency ~32.7 kHz
 - Extremely low dissipative losses: Q~10 000 at 1 atm, Q~100 000 in vacuum
 - Low cost (<\$0.30)
 - Record sensitivity: 50 part-per-trillion $\lambda = 10.54 \ \mu m$ (SF₆)
- Very small sensing module and sample volume (few mm³)
- Optical detector is not required
- The whole sensor can fit into a 2 inch internal diameter pipe for downhole operations

C1, C2 absorption lines

Absorption cross-sections for methane, ethane simulated from HITRAN database at 50 torr in a spectral region as wide as a typical interband cascade laser tuning range.

Experimental Apparatus

ILC characteristics

• $\lambda_{\text{emission}}$: 3345 nm

• Tuning range: **12 nm**

Optical Power: 12 mW

Spectrophone characteristics

- Standard QTF @ 32kHz
- Double micro-resonator tube amplification system
- Q at atm pressure: 1200

Spectroscopic technique

• **2f wavelength modulation**: laser current modulated at the half of the QTF resonance frequency and QEPAS signal demodulated by lock-in amplifier at the QTF resonance frequency → background free detection

C1 detection

C2 detection

Photonics West

- $T_{ICL} = 15$ °C
- I_{ICL} = 66 mA
- P = 200 torr
- Modulation amplitude = 130 mVp-p
- Phase = 166.15°
- Linearity: $S = 5.54 \frac{mV}{ppm} \cdot conc + 0$
- Broadband absorption background

Detection Limits – Allan deviation analysis

- Detection limit C1: 70 ppb @ integration time 1 s
- Detection limit C2: **7 ppb** @ integration time **1 s**, **RECORD for QEPAS technique**

C1/C2 mixture

C1/C2 mixture

Detection Scheme&Strategy

C2 = 1000 ppm Phase = 99.68°

48

- P = 200 torr
- $T_{ICL} = 15$ °C
- I_{ICL} span from 30 mA to 70 mA
- Modulation amplitude = 130 mVp-p
- Phase = 99.68° @ C1, 166.15° @ C2

What about broadband absorption background from heavier molecules?

AEPAS Signal (mV)

47

Injection Current (mA)

46

Propane C₃H₈ (C3)

- Are these absorption features defined enough for wavelength modulation approach? What about amplitude modulation?
- Is the QEPAS response over this broad absorption spectrum linear?

The best chance is...

P = 760 torr, Modulation amplitude = 300 mVp-p, Phase = 142°

C3 detection – preliminary results

Integration time 0.1 s

- Linearity has been demonstrated for three different peaks also at T_{ICL} = 5°C, 10°C
- Detection limit @ 1s for peak at 5°C is 20 ppm
- Can C3 absorption background be leveled off?
- Can C3 be detected and discriminated by C2 absorption background?

Conclusions

- Design of a benchtop sensor prototype for unambiguous detection of C1, C2;
- The detection scheme is simple and suitable for rapid scan measurements;
- Broadband absorption from C3 is still detectable by wavelenght modulation;

Future Perspectives

- Investigation of heavier molecules such as C4;
- Study of the broadband absorbers effects on C1, C2 detection;
- Study of the effects of variable gas matrix;
- Training and validation of the sensor by analyzing gas mixtures from the well site;
- Design of a compact and ruggedized sensor to be implemented in pre existing tools devoted to assisted drilling.

