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Abstract

Regression models coupled with time series data were used to analyze the contribution of primary and secondary

sources to formaldehyde (HCHO) concentrations, as determined by statistical analogy to primary (carbon monoxide,

CO) and secondary (ozone, O3) compounds measured simultaneously in Houston, TX. Time series analyses

substantiated the need for statistical methods of analysis, given the complexity of the data and the rapid fluctuations

that occur in atmospheric concentrations. A positive relationship was found for both the auto-correlation function

(ACF) and partial auto-correlation function (PACF) of HCHO with either CO or O3. Regression models used to

distinguish primary and secondary contributions included a simple linear regression of the three compounds (one lag

unit of time, 5 min) on current HCHO concentrations, resulting in a ratio of secondary formation to primary emission

of 1.7. A second, more robust model utilized auto-correlated error processes to approximate the true nature of the

linear regression; this model also indicates the ratio of secondary to primary contribution at 1.7 as the mean of ten

model simulations. From the error processes model, one lag unit of time was most significant for CO predicting HCHO,

while simultaneous measurements (lag 0) were most significant for O3 predicting HCHO. Outlying O3 and HCHO

concentrations were shown not to affect the results.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Volatile organic compounds (VOCs) and oxides of

nitrogen (NOx) react in the presence of sunlight to yield

ozone (O3), one of six criteria pollutants regulated under

the Clean Air Act. Elevated concentrations of tropo-

spheric O3, the primary component in photochemical

smog, are commonly measured in urban centers and

across regional airsheds, impacting human health

and causing damage to crops, forests, and materials

(Moussiopoulos, 1990; Berntsen et al., 1997; Seinfeld

and Pandis, 1998). Continuous exposure to substantial

levels of O3 irritates the eyes and lungs at low persistent

levels, and causes respiratory illness at higher concen-

trations (Johnson et al., 1981; Pryor, 1998). For those

regions in violation of the federal O3 standard, oxidant

control strategies for attainment purposes require an

understanding of O3 formation precursors, including

VOCs. In particular, it is important to differentiate

between primary (directly emitted from sources) and

secondary (formed by atmospheric chemical reactions)

VOCs to direct policy for the control of these

compounds.

One VOC of interest is formaldehyde (HCHO), a

highly reactive compound found in urban and rural

atmospheres; primary HCHO sources include vehicular
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exhaust and fugitive industrial emissions (Altshuller,

1993). Secondary formation of HCHO from the break-

down of primary compounds, also contributes to

ambient formaldehyde concentrations. Primary sources

and secondary formation must both be included in

calculating VOC loadings in the troposphere for

purposes of predicting concentrations of O3 or other

species. However, differentiating between primary and

secondary sources of HCHO is important for regulatory

and control purposes.

In this study, primary and secondary contributions to

HCHO concentrations are estimated through statistical

methods of analysis of simultaneous real-time measure-

ments of HCHO, carbon monoxide (CO), and O3.

Significant previous research has focused on HCHO, as

the photolysis of HCHO during daylight hours produces

atmospheric radicals that drive photochemical smog

formation (National Research Council, 1991). Past

research (Altshuller, 1993; National Research Council,

1991; Possanzini et al., 1996; Kawamura et al., 2000) has

investigated the production of HCHO from both

primary and secondary sources by comparing estimates

of HCHO from vehicular emissions with estimates of

HCHO from alkene and alkane atmospheric reactions.

The advantage of the current study is that by using

simultaneous real-time measurements and rigorous

statistical analysis in determining these relative con-

tributions, the statistical accuracy of the estimations can

be quantified.

Formaldehyde concentrations are governed by both

primary emissions and secondary formation. The

simplest, most reactive, and most abundant atmospheric

carbonyl, HCHO levels typically range from about

10–20 ppbv in most urban settings (Carlier et al., 1986).

Primary sources of HCHO include vehicle exhaust

(Grosjean et al., 1993) and stationary sources (Grosjean

and Swanson, 1983). Radical-driven atmospheric chem-

istry of a wide variety of VOCs is responsible for

secondary HCHO in urban atmospheres, and isoprene

interactions account for a large percentage of secondary

HCHO from hydrocarbons emitted from biogenic

sources (Altshuller, 1993; Harder et al., 1997). During

a recent sampling campaign (Rehle et al., 2001), HCHO

concentrations in Houston reached almost 45 ppbv in a

heavily industrialized section of the city.

Since chemical quantification cannot differentiate

between primary emissions and secondary formation

of atmospheric formaldehyde, an alternative approach

must be taken. In this work, statistical time-series

analysis is used to separate the concentration of primary

formaldehyde from secondary formaldehyde using the

information contained in the fluctuating concentration

of other pollutant gases (Box et al., 1994). Carbon

monoxide is a stable, colorless and odorless gas with an

atmospheric lifetime of 2–4 months. Anthropogenic

primary emissions dominate the sources of atmospheric

CO. In Houston, mobile sources contributed approxi-

mately 90% of the CO, and stationary point sources

contributed 8% (Houston-Galveston Area Council,

1999). For the purposes of this study, statistical analogy

of HCHO to CO measurements represents the primary

contribution to HCHO formation. In contrast to CO

which is dominated by primary emissions, tropospheric

ozone exists solely as a secondary compound, formed

and destroyed in the atmosphere via a cyclical series of

reactions involving VOCs, NOx and sunlight. For this

study, statistical analogy of HCHO to O3 is used to

estimate the secondary formation of HCHO.

The objectives of the study were to determine the

relative contribution of primary emissions and second-

ary formation to the atmospheric HCHO levels based on

the statistical relationship between ambient concentra-

tions of HCHO, CO and O3. The temporal relationship

between these pollutants was sought to determine the

relative staging of pollutant concentrations. While this

work was conducted in Houston area, the results can

generally be extrapolated given certain limitations,

including (1) likely contributors to both primary and

secondary HCHO formation will only be generally

approximated by CO and O3 concentrations; (2) source

contributions vary in importance, which cannot be

elucidated when using only one primary and only one

secondary compound in the analogy (Duarte-Davidson

et al., 1997); (3) atmospheric lifetimes (t) of aldehydes

are on the order of hours, where loss occurs mostly via

reaction with OH radicals and photolysis (Tanner et al.,

1988); and (4) the diurnal variation in solar intensity will

lead to changing ratios of primary emissions to

secondary formation for HCHO during the course of

the day, while statistical time series analysis can only

estimate the average ratio of primary to secondary

formaldehyde (Box et al., 1994)

2. Methods

2.1. Sampling site

Over 30 Continuous Air Monitoring Stations

(CAMS) are operated by the Texas Natural Resource

Conservation Commission (TNRCC), the City of

Houston, and the Houston Regional Monitoring

Corporation throughout Houston and the surrounding

counties (see http://www.tnrcc.state.tx.us/cgi-bin/

monops/select summary). These sites collect continuous

measurements of gaseous pollutants such as ozone,

carbon monoxide, oxides of nitrogen, and meteorologi-

cal variables. The compound data in the present study

were collected between 14 June and 21 June 2000 at Deer

Park CAMS 35 (operated by the TNRCC) located south

of the heavily industrial Houston Ship Channel, and

northwest of Galveston Bay and the Gulf of Mexico.
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During the 1-week sampling period, temperature and

relative humidity ranged from 231C to 331C and 48% to

98% RH. The period included several hours of

precipitation, from midday 15 June to mid-morning 16

June 2000 during which HCHO data were not recorded.

All instrumentation was kept inside the CAMS trailer,

with tubing leading to the rooftop for ambient air

collection. Sampling from the 4 m rooftop allowed free

airflow in all directions. The collection instruments were

maintained at 261C in an air-conditioned monitoring

station.

2.2. Data acquisition

Ozone measurements were made by using a Dasibi

1008AH instrument with precision and detection limits

of 1 ppbv. Carbon monoxide was measured using a Teco

Model 48 instrument with precision and detection limits

of 10 ppbv. Though TNRCC-operated instruments at

Deer Park record O3 and CO concentrations every

5 min, the data are reported publicly as hourly averages,

reflecting federal standards such as NAAQS. To under-

stand more clearly the regional atmospheric chemistry,

however, requires accurate measurements at shorter

intervals to account adequately for rapid fluctuations in

atmospheric concentrations (Fried et al., 1998). Tradi-

tionally, HCHO concentrations were measured hourly

or daily (Salas and Singh, 1986; Possanzini et al., 1996;

Gilpin et al., 1997) due to a lack of technology for

accurate real-time collection and analysis, in addition

to relative simplicity with time-integrated methods.

The present study employed a relatively new spectro-

scopic technique based on difference frequency

generation (DFG), designed to measure HCHO on a

real-time basis with an estimated precision of B0.5 ppbv

(Lancaster et al., 2000). In a recent study, the DFG

sensor was shown to be a robust and accurate method

for HCHO quantification (Friedfeld et al., 2000).

Details of the DFG sensor are reported in Rehle et al.,

2001.

Data were collected at 5-min intervals from 14 June

2000 (1400 CDT) to 21 June 2000 (1100 CDT) with

several periods of data missing for instrument re-

calibration and maintenance. Examination of the data

demonstrated a few observations missing at random

until an 11-h rainstorm (15 and 16 June 2000) and

disruption of DFG collection, followed by a reasonably

contiguous period for the remainder of the week with

some further random missing data. Due to a large

data pool following the 11 h disruption of HCHO

collection, we focused analysis on this latter period;

overall, nearly 5900 measurements were collected

simultaneously for the three compounds of concern.

To treat missing data from either instrument re-

calibration or maintenance of the DFG monitor, a

univariate auto-regression (AR) model was fit to each

series separately, where the sample mean value was

assigned to all missing data points. The missing

observations were imputed by simulating random values

random values based on the sampling distribution of the

estimator, at that point in time. The new imputed

observations do not incorporate cross-correlative struc-

ture, as only univariate models were considered; thus,

resulting estimates of possible interactions between

pollutants are conservative.

2.3. Diagnostic statistics

All statistical analysis was performed with the soft-

ware package S-Plusr (S-Plus, 2000). Time series

analyses are generally used to understand the stochastic

mechanism that gives rise to an observed series or to

predict future values based on series history (Box et al.,

1994). The time series data collected at Deer Park allow

for statistical investigation of primary and secondary

inputs to atmospheric chemical reactions. Modeling the

time series using the chosen methodologies, however,

requires a transformation of each series to correct for

the skewness of the data. Quantile plots were thus

developed to assess the symmetry and tail behavior of

various data transformations of the series, including

comparing the original data with natural log, square

root, and negative inverse transformations of the three

series.

To remove the auto-correlation within each series so

that we can identify lagged correlations between series, a

fitted auto-regressive equation was determined for each

series, and the residuals (error terms) from each

equation obtained. Only cross-correlation effects be-

tween series therefore remained. Both the auto-correla-

tion function (ACF) and the partial auto-correlation

function (PACF) were evaluated using the residuals of

the model fit to the square-root transformed data to

attribute both the cumulative and individual influence

of primary and secondary compounds on HCHO

(through analogy with CO and O3 measurements).

Recall, only data following the rainstorm on 15 and 16

June were included in the analyses; any few remaining

missing values were accounted for as previously

described.

The ACF represents the sample correlation between

sets of ordered data pairs; the sample correlation was

computed for HCHO at time t (HCHOt) and CO at time

t21; t22;y, t225; as well as O3 at the same lagged

values. Recall in this study the time unit is 5 min, thus

COt�25 and O3,t�25 indicate concentrations measured

approximately 2 h prior to HCHOt. By definition, the

ACF indicates the cumulative effect of all lag periods on

the present concentration. The PACF, on the other

hand, measures the correlation between the present

concentration and the concentration at one lag only.
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2.4. Statistical modeling

The complexity of the data—B5900 simultaneous

measurements—requires rigorous statistical analyses to

discern a lag–lead relationship and primary vs. second-

ary HCHO precursor contributions. Two linear regres-

sion models were applied to the HCHO, CO, and O3

series. The first model uses a basic linear regression of

HCHO at time t; with explanatory variables COt–1,

O3,t–1, and HCHOt–1, that is, at 1 lag unit of time as per

the equation

HCHOt ¼ b0 þ b1COt�1 þ b2O3;t�1

þ b3HCHOt�1 þ et; ð1Þ

where the coefficients b1 and b2 approximate the true

nature of the contribution of primary and secondary lag

concentrations on HCHO as measured by a linear

relationship and et is the error term that is assumed to be

independent with constant variance and mean zero. This

simple linear regression model provides a preliminary

assessment of the relationship between HCHO and the

primary and secondary variables (CO and O3).

Improving on the previous model, we consider a

regression model relating lagged values of CO and O3 to

HCHO but also accounting for the serial correlation in

the error process. More specifically, the second model

considered is

HCHOt ¼ b0 þ b1COt�j þ b2O3;t�k þ zt; ð2Þ

where j and k equal lag (0, 1, 2,y) and j may or may not

equal k: The error process zt is assumed to follow an

auto-regressive process of order p; the order of the

process is estimated from the observed series. In this

analysis, the constant term, b0; is estimated as the

sample mean of the HCHO series. The Cochran–Orcutt

method (25) was used iteratively to obtain estimates of

the remaining regression coefficients and the parameters

of the auto-regressive error process.

Using both a partial auto-correlation (which is

dependant on measurements of CO, O3 and HCHO

made in the previous time period) and an auto-

correlation function (which is dependant on measure-

ments of CO and O3 made over the previous 25 time

periods) evaluates the effects of chemical reactions on

model predictions. In the partial auto-correlation func-

tion, relating the present HCHO concentration to the

pollutant concentration measured in the previous time

period minimizes biases in the model from chemical

reaction of HCHO as well as O3 and CO. On the other

hand, the auto-correlation function calculates the

present HCHO concentration as a function of CO and

O3 measured over the previous 25 time periods, which

could be subject to biases from chemical reaction of the

pollutant gases. Using both calculations allows empiri-

cal evaluation of whether chemical reaction of pollutant

gases affects the model predictions.

3. Results

3.1. Time series analysis

Separate time series plots were created for all

three compounds of interest (Fig. 1a). The x-axis is

marked by 1200 CDT on each sampling day, while the

y-axis represents atmospheric concentration in ppbv

(HCHO and O3) or ppmv (CO); each graph is scaled

individually to emphasize diurnal patterns. For CO, the

overall average, minimum, and maximum concentra-

tions are 0.37, 0.28, and 0.62 ppmv. The CO concentra-

tions follow a relatively cyclical pattern, with an

average daily maximum of 0.51 ppmv occurring at

around 0600 CDT during the weekdays (and at 2000

CDT on the weekend, 17 and 18 June); the mean daily

minimum was 0.30 ppmv, with varied times throughout

the week.

The O3 concentrations fluctuate in a less distinct

diurnal cycle highlighted by extreme values, with a

weekly minimum of 0.4 ppbv and maximum of

77.3 ppbv. The average O3 concentration was 18.4 ppbv,

and the average daily maximum was 38.0 ppbv, and the

highest levels occurred between 1000 and 1300 CDT

almost daily. From the figure, there is a noticeable spike

on 18 June at 1300 CDT, where the concentration

reached 77 ppbv. The missing data for HCHO

during the rainstorm on 15–16 June are shown as a

straight line simply for graphical purposes and do not

reflect interpolated values. Formaldehyde concentra-

tions ranged from 0.2 to 19.6 ppbv, with a weeklong

average of 4.9 ppbv. Typical diurnal fluctuations re-

mained limited between 1.2 and 9.5 ppbv, the daily

minimum and maximum averages. As with O3, a

concentration spike up to B20 ppbv occurred in early

afternoon on June 18. The smaller and more rapid

fluctuations of HCHO highlight the importance of real-

time measurements in studying regional atmospheric

chemistry.

Fig. 1b contains an overlay plot of HCHO and

O3, as these compound concentrations follow a

more irregular pattern than CO levels. The regular CO

pattern presumably arises from the primary nature

of CO sources, devoid of external interferences

such as wind patterns, meteorology, temperature,

and other compound concentrations and reaction

conditions. The CO cycle changes during the

weekend, reflecting different industrial production

and vehicular usage. Secondary compounds are all

subject to similar external influences; the 18 June

spike for both secondary compounds indicates the

presence of such an influence (Fig. 1b). While

similar cyclical patterns exist throughout the week,

the small range of HCHO concentration fluctua-

tions requires statistical considerations for further

analysis.
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3.2. Quantile plots

Fig. 2 contains quantile plots of the non-transformed

data along with the natural log, square root, and

negative inverse transformations. Each row represents

a time series (HCHO, O3, and CO, respectively) and

each column represents a transformation (original data

(x), ln(x), Ox; and x�1; respectively). The x-axis

indicates the percentile of a value in the series centered

about 0 and the y-axis represents each value. Visually,

the most well-behaved data occur with the square-root

function. While all transformations appeared generally

symmetric with the CO data, the log and negative

inverse functions lose symmetry about the median for

HCHO and O3 values. The square-root transformation

is not perfectly normal for all three data sets, but

appears the most symmetric transformation nonetheless.

3.3. ACF and PACF

The ACF and PACF were plotted against time (in lag

units of 5 min) for CO and O3 correlated with HCHO.

The ACF as a function of lagged time for both CO and

O3 correlated with HCHO indicates an overall strongly

positive relationship. Similarly overall positive partial

auto-correlations are observed as well. Although the

Fig. 1. (a) Time series plots of CO, HCHO, and O3 measured at Deer Park. The x-axis is time, marked at 1200 CDT. The y-axes are

the concentration in ppmv for CO and ppbv for HCHO and O3. (b) Overlay of O3 and HCHO time series plots.
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ACF and PACF values are small, they are highly

significant in general.

3.4. Statistical modeling results

Table 1 contains a summary of the results and the

statistical significance of the fitted simple linear regres-

sion for Eq. (1). The p-value (denoted by Prð> jtjÞ)
indicates that there is approximately zero probability

(truncating at four significant digits) that with any of the

estimates of the coefficients, the true nature of the

relationship between the gases for the equation con-

sidered is 0. Each coefficient can therefore be considered

not only statistically significant, but in fact a good

estimate of the true (theoretical) value. The p-value of

the F-statistic is 0, further demonstrating that there

exists a non-zero relationship between the response and

explanatory variables. Considering solely primary and

secondary contributions in this model, 64% of HCHOt

concentrations is correlated with O3,t�1 (coefficient b2,

0.22) and 36% with COt�1 (coefficient b1; 0.13), or a

ratio of 1.7. It is prudent for us to note some obvious

limitations of this modeling strategy, given that CO and

O3 concentrations would not fully represent accurately

and completely the primary and secondary compounds.

Many other reactive compounds exist and contribute to

the complexity of the atmospheric composition and

chemistry.

Table 2 contains summary results for the fitted model

of Eq. (2). To determine the lag periods for which CO

and O3 most significantly lead to the formation of

HCHO, the contributions to a multiple regression model

for varying lags in the presence of one another were

compared. The most significant lags in the regression,

when compared with other lags, include lag 1 (5 min) for

CO and lag 0—that is, simultaneous concentrations—

for O3. These lag periods (0 and 1) emphasize that

hourly or daily time-integrated measurements do not

Fig. 2. Quantile plots of original and transformed data series for HCHO (top row), O3 (center), and CO (bottom). The

transformations include: original data, natural log, square root, and negative inverse. The x-axis indicates the percentile of a value in

the series centered about the median (0); the y-axis represents the transformed value. The square-root transformation is considered to

be the most symmetric.

Table 1

Regression coefficients and related statistics from a simple

linear regression model for Deer Park data, June 2000. The

term Prð> jtjÞ indicates that the coefficients on the regressors are

acceptable at the 95% confidence interval. The ratio of

coefficients (used to estimate the ratio of secondary to primary

formaldehyde) is 1.7

Compound Coefficient Standard

error

t-value Prð> jtjÞ

CO 0.13 0.025 5.15 0.00

O3 0.22 0.026 8.60 0.00

HCHO 0.33 0.025 13.1 0.00
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accurately represent the true nature of the atmospheric

chemistry of a region; a significant simultaneous

secondary concentration (HCHO and O3) highlights

the need for historical data with statistical analyses to

predict peak O3 concentrations.

As described above, missing values were replaced with

random imputed values; thus, the iterative process was

simulated ten times each for COt�1 and O3,t, the most

significant lag periods. The mean coefficient for both

compounds is listed in Table 2; the mean p-value

suggests that the results are significant for CO at

94.5% confidence and O3 at 99.9% confidence. The

auto-correlated error-processes model produced an

identical result to the basic linear regression model,

with a ratio of b2(O3) to b1(CO) of 1.7.

As described in the time series analysis above, a

noticeable spike in concentration occurred for both

HCHO and O3; the remaining data appeared to follow

repetitive diurnal cycles. In Fig. 3a plot of the residuals

vs. each of the predictors was created to assess the effect

of outliers, such as that on 18 June, on the fitted auto-

correlated error processes model. Although there are a

few moderate outliers, they do not overly influence the

fitted models.

3.5. Implications

Both modeling strategies attribute nearly two-thirds

(ratio 1.7) of HCHO formation to secondary VOC

reactions, and only one-third to primary emissions.

Earlier studies have been conducted similarly investigat-

ing the contribution of primary and secondary pre-

cursors to HCHO formation. As previously stated, these

studies often relied on estimates of vehicular exhaust

and assumptions of reactant concentrations and reac-

tion rate constants.

Possanzini et al. (1996) measured HCHO and CO at

1-h time-averaged intervals and obtained vehicular

emissions from a previous source. Using average O3

and OH reaction concentrations for estimating second-

ary reactions with alkenes, the group found between 44

and 49% of the HCHO formation could be attributed to

secondary formation. Others used similar procedures,

but obtained results closer to those in this study, where

secondary emission precursors predominate HCHO

formation. Altshuller (1993), for example, investigated

aldehyde formation from primary and secondary

sources during night and early morning hours; the

investigation entailed an emissions inventory estimate

Table 2

Mean values from ten simulations of the auto-correlated error

processes model. The Prð> jtjÞ terms indicate that the CO

coefficient is acceptable at the 95% confidence interval, and the

O3 coefficient is acceptable at the 99% confidence interval. The

ratio of coefficients (contribution of secondary to primary)

is 1.7

Compound Coefficient Prð> jtjÞ

CO 0.09 0.055

O3 0.15 0.001

Fig. 3. Plots of the residuals vs. predictors for both CO and O3 indicate that outliers, such as the spike in concentration of O3 and

HCHO on 18 June, do not affect the results of the auto-correlated error processes model, and thus the model is considered valid in

assessing the primary and secondary contributions to HCHO concentrations.
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from 1980s vehicles and typical diurnal concentrations

and rate constants for alkenes, NO3, and O3. The mean

result for that investigation led to B78% HCHO

attributable to secondary reactions and 22% to primary

emissions for 0600–0900 h. A high ratio of secondary/

primary compounds was also calculated by Kawamura

et al. (2000). Kawamura et al. (2000) used historic

1980s Los Angeles data for both vehicular exhaust

and compound concentrations and concluded that

secondary photochemical reaction contributed approxi-

mately 87% to aldehyde production during daylight

hours.

The present study incorporates simultaneous mea-

surements of primary and secondary compounds at

relatively short intervals over a statistically significant

time period and therefore provides the most accurate

assessment of HCHO formation. These studies are all

complicated by the fact that measured HCHO concen-

trations need to account for both formation and

destruction, that is, net production. Altshuller (1993)

emphasizes only HCHO production, but states also that

HCHO reaction with O3 is extremely slow; thus, the

short (5 min) time intervals do not need to account for

that reaction. Formaldehyde reaction with OH does

serve as an important mechanism of HCHO destruction;

however, this reaction is considered implicitly in the

regression models, since any estimate of the destruction

(e.g., rate constant kOHdHCHO and OH concentration)

would be subtracted equally from each HCHO concen-

tration in the data series prior to statistical modeling,

and subsequently not affect the resultant coefficients b1

and b2: Kawamura et al. (2000) simply accounted for net

production by assuming a conservative change of 2/3 in

concentration.

The assumptions used in this study are important in

interpreting the results. Many sources emit primary

HCHO, and many reactions and precursors contribute

to secondary HCHO production. Thus, the analogy

using only CO and O3 concentrations serves only as an

approximation; nonetheless, the results of this study can

be extrapolated to other urban areas with similar O3

problems more readily than can the results from

previous studies, as both real-time and simultaneous

measurements greatly decrease the gross assumptions

made by others. Because the models showed that nearly

two-thirds of HCHO production is attributable to

secondary reactions in the atmosphere, legislative efforts

to reduce primary emissions of higher aldehydes and

ketones—those compounds that break down in the

atmosphere to form HCHO—will more effectively

contain HCHO production, and ultimately O3 produc-

tion as well. A future shift in gasoline composition to

methanol or natural gas could result in higher primary

emissions of HCHO and thus create a likewise shift in

the secondary/primary contribution of HCHO. Ob-

viously, decreasing primary emissions of HCHO along

with a simultaneous decrease in emissions of higher

carbonyl compounds as part of an implementation plan

would most effectively reduce O3 concentrations.
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