








 

 

      
Figure 5. Compact QEPAS multi-gas sensor. Schematic diagram (left); photograph (right). CEU—control 
electronics unit; DL1, DL2, DL3, DL4—diode lasers; SPh1, SPh2, SPh3, SPh4—specrophone; TA—
transimpedance amplifier 

4. Performance assessment of compact multi-gas sensor 
4.1 Sensitivity of compact multi-gas sensor 

The sensor sensitivity was evaluated in nitrogen as a carrier, using trace gas sources. The results are shown in Table 1. 

Table 1. Sensitivity measured in N2 as a trace gas carrier. All measurements are performed at atmospheric pressure.  

 

 

 

1. NEC: Noise-Equivalent Concentration  
2. NNEA: Normalized Noise-Equivalent Concentration. 
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4.2 Linearity of the sensor response 

The linearity of the multi-gas sensor response was evaluated. The results are shown in Fig. 6. A linear response 
evaluation of the HCl sensor was not performed since only a 10 ppm HCl cylinder was available. The accuracies and 
linear ranges of the CO, HCN and CO2 channels were good as shown in Fig. 6.       

Figure 6. Linear response of CO, HCN and CO2 sensing channels. 

4.3 Gas humidity impact 

 
Figure 7. Impact of humidity on CO2 signal. 
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In photo acoustic spectroscopy, the vibrational-translational (V-T) relaxation rate of gas plays an important role. In case 
of a slow V-T relaxation rate with respect to the modulation frequency, the translational gas temperature cannot follow 
fast changes of the laser induced molecular excitation rate. Thus the generated photoacoustic wave is weaker than it 
would be in case of instantaneous V-T energy equilibration. However, the presence of H2O can increase the V-T 
relaxation rate of the target gas. Figure 7 shows the impact of water vapor on CO2 signal. When the relative humidity 
is >0.2 %, the V-T relaxation rate is saturated, and the measured QEPAS signal is no longer impacted by humidity. 
Similar studies were performed for CO, HCl and HCN. The impact curves are used to calibrate the QEPAS output 
signals. 

4.4 Test data of QEPAS multi-gas sensor 

 
 

Figure 8. QEPAS signal of compact multi-gas sensor recorded for varied gas concentrations obtained using a 
commercial gas mixer. 

Each of the four sensor channels shows 4-second averaged-response data as discrete dots and a 40-second 
running average as a solid line. The 4-second averaged-respond data can reflect the instantaneous change of the 
gas concentration, while the 40-second average measures the precise gas concentration. Figure 8 shows the 
recorded signals while the gas concentration was varied by a gas mixer  

5. Summary 
In this paper, we designed, assembled, and assessed a compact portable multi-gas sensor, which can quantify CO, CO2, 
HCl and HCN simultaneously. We demonstrated detection sensitivity limits (1 s averaging time) of 7.7 ppm for CO, 450 
ppb for HCN, 1.5 ppm for HCl and 100 ppm for CO2, respectively. Our measurements show that the compact, multi-gas 
sensor based on 3 near-infrared DFB communications and one Sb diode lasers is applicable for early fire detection.  
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