Infrared Dual-Gas CH₄/C₂H₆ Sensor Using Two Continuous-Wave Interband Cascade Lasers

Chuantao Zheng, Weilin Ye, Nancy P. Sanchez, Aleksander K. Gluszek, Arkadiusz J. Hudzikowski, Chunguang Li, Lei Dong, Robert. J. Griffin, and Frank K. Tittel, Fellow, IEEE

Abstract—An infrared dual-gas sensor system for the simultaneous detection and monitoring of methane (CH₄) and ethane (C₂H₆) at parts-per-billion by volume (ppbv) concentration levels was developed using two room temperature, distributed feedback (DFB) interband cascade lasers (ICLs) and two miniature multipass cells with an effective absorption length of 54.6 m. Laser direct absorption spectroscopy (LDAS) was used to detect CH₄ utilizing the 3035.8 cm⁻¹ absorption line, and second-harmonic wavelength modulation spectroscopy (2f-WMS) method was used to detect C₂H₆ using the 2996.88 cm⁻¹ absorption line. The 1σ CH₄ detection limit is ~ 2.7 ppbv with a 1 s averaging time and exhibits a minimum value of ~ 1.7 ppbv for a 9 s averaging time; the 1σ C₂H₆ detection limit is ~ 2.6 ppbv with a 3.4 s averaging time and shows an optimum averaging time of 65 s corresponding to a stability of ~ 0.36 ppbv. Using the dual-gas sensor system, 48 hours’ monitoring of the two atmospheric gases was performed in the Greater Houston area, TX, USA.

Index Terms—laser sensors, spectroscopy, infrared, semiconductor lasers, quantum cascade

I. INTRODUCTION

METHANE (CH₄) is a main contributor to the greenhouse effect and a safety hazard in the production of chemicals.

Hence the monitoring of CH₄ concentration levels is critical in urban or rural areas [1,2]. Ethane (C₂H₆) [3,4] is the second-largest component of natural gas after CH₄, which is mainly used in the chemical industry. Simultaneous detection of C₂H₆ and CH₄ is an effective method to discriminate CH₄ origin between thermogenic (e.g. natural gas production) and biogenic sources (e.g. landfills, wetlands). Therefore, a dual-gas sensor should be developed to perform the detection of CH₄ at an atmospheric level of ~ 2 parts-per-million by volume (ppbv) ppm and C₂H₆ from several parts-per-billion by volume (ppbv) to tens of ppbv.

Laser direct absorption spectroscopy (LDAS) is an increasingly important method for trace gas detection [5, 6]. In LDAS, either a near-infrared or a mid-infrared semiconductor laser source can be used. Commercially obtainable quantum cascade lasers (QCLs) are limited to wavelengths above 4 µm [7], which cannot be used for targeting the strongest absorption lines of CH₄ and C₂H₆ at ~ 3.3 µm. Interband cascade lasers (ICLs) can provide continuous-wave (CW) radiation in the 3.0–4.0 µm spectral region at room temperature [8]. ICLs also possess an intrinsic distributed feedback (DFB) structure, which permits CW tuning with spectral linewidths of < 10 MHz. Therefore, the combination of LDAS and ICL provides ultra-high sensitive detection on CH₄ and C₂H₆ in the 3.0–4.0 µm spectral region. LDAS technique was used for CH₄ detection, which is simple to realize and sufficient for measuring the light intensity directly using a novel, compact, multipass gas cell (MPGC) with an effective 54.6 m absorption length and a strong absorption line at 3035.8 cm⁻¹. However, the ppb-level detection of C₂H₆ required second-harmonic wavelength modulation spectroscopy (2f-WMS).

II. SENSOR STRUCTURE AND DESIGN DETAILS

A. Absorption Line Selection

HITRAN absorption spectra of 2% H₂O, 10 ppbv C₂H₆, 1.8 ppmv CH₄, calculated at 700 Torr gas pressure and a 5460 cm effective optical path length are depicted in Fig. 1(a). A single CH₄ line which is located at 3038.5 cm⁻¹ was selected as the target line. A H₂O absorption line at 3038.75 cm⁻¹ is observed, which will affect the CH₄ detection especially at higher H₂O concentration levels. Therefore, a drier must be used to filter H₂O during CH₄ detection. Similarly, HITRAN absorption spectra of 2% H₂O, 10 ppbv C₂H₆, 1.8 ppmv CH₄ calculated at 100 Torr gas pressure and a 5460 cm effective optical path length are depicted in Fig. 1(b) within the range of 2996-2998

Manuscript received Mar. 17, 2015. This work was supported in part by the National Science Foundation of China (Grant Nos. 61377124, 61575113 and 61275213), the Changchun Municipal Science and Technology Bureau (Grant No. 14K022), the High School Outstanding Young Teacher Training Program of Guangdong Province (Grant No. YQ2015071), the National Natural Science Foundation of Guangdong Province (Grant No. 2015A030313442), the National Science Foundation (NSF) (ERC MIRTHE award), a Robert Welch Foundation (Grant No. C-0586), a USA NSF Phase II SBIR (Grant No. IIP-1230427DE DE), DOE ARPA-E awards (Grant Nos. DE-0000545 and DE-0000547), and the China Scholarship Council (Grant Nos. 201406170107, 201506175025 and 201508440112). (Corresponding author: Weilin Ye)

Chuantao Zheng, Chunguang Li are with State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, 2699 Qianjin Street, Jilin University, Changchun 130012, China (e-mail: zhengchuantao@jlu.edu.cn, lcg0213@126.com).

Chuantao Zheng, Weilin Ye, Aleksander K. Gluszek, Arkadiusz J. Hudzikowski and Frank K. Tittel are with the Electrical and Computer Engineering Department, Rice University, 6100 Main Street, Houston, Texas 77005, USA (e-mail: cz30@rice.edu, wy10@rice.edu, akg50@rice.edu, ahh31@rice.edu, fkt@rice.edu).

Weilin Ye is with College of Engineering, Jilin University, 243 Daxue Road, Shantou 515063, China (e-mail: whye@stu.edu.cn).

Nancy P. Sanchez and Robert. J. Griffin are with Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA. (nps1@rice.edu, rob.griffin@rice.edu)

Lei Dong is with State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shandong University, Taiyuan 030006, China (e-mail: donglei@sxu.edu.cn)
An interference free \(\text{C}_2\text{H}_6 \) absorption line centered at 2996.88 cm\(^{-1}\) was selected as the optimum target line. Such a low pressure also avoids the interference from \(\text{CH}_3 \) absorption at \(\approx 2997 \) cm\(^{-1}\) by suppressing the broadening of this line.

A multipass fitting was performed on the data (Fig. 1). The interference-free \(\text{C}_2\text{H}_6 \) 2% \(\text{H}_2\text{O} \) absorption

\[
\text{Absorption} = \frac{I - I_0}{I_0} = \frac{\text{ICL output}}{\text{ICL bias}}\]

was used to determine the effective optical path into a reduced space. An effective optical path length of 54.6 m was obtained after 435 beam passes. The exiting ICL beam from the MPC was focused onto a mercury-cadmium-telluride (MCT) detector (Vigo, PVI-4TE-4) using a 35-mm focal length parabolic mirror (PM).

For the \(\text{CH}_4 \) sensor, a laptop equipped with a DAQ card (NI, model 6062E) with similar parameters used in Ref. [2] was used to generate a 500 Hz sawtooth scan signal (2.1 V bias, 0.4 V amplitude). The ICL temperature was set to 30.95 °C using an onboard temperature controller. The sensing signal was supplied to DAQ card (#1) for data processing with a sampling rate of 500 ksp.s.

For the \(\text{C}_2\text{H}_6 \) sensor, the same laptop equipped with a second DAQ card (NI, model USB6356) was used to generate a 0.3 Hz triangular wave with a peak-peak amplitude of 0.2 V as well as a 5 kHz modulation signal with a peak-to-peak amplitude of 0.026 V. The two signals were superimposed on each other and supplied to the commercial ICL current driver (Thorlabs, model LDC202C) with a bias current of 47 mA. The ICL temperature was set to 10 °C using a commercial temperature controller (Wavelength Electronics, model LFI-3751). The sampling rate of the DAQ card, including the DAC and ADC module, was set to 300 kHz, resulting in 10^6 data points per triangular period. The 2/f signal was obtained from a LabVIEW-based lock-in amplifier (see Fig. 3), whose amplitude was used to determine \(\text{C}_2\text{H}_6 \) concentration. The total power consumption of the dual-gas sensor system was \(\approx 500 \) W, including \(\approx 200 \) W for the two vacuum pumps (KNF Neuberger Inc, model N 813.5 ANE/AF), \(\approx 100 \) W for the ICL driver and temperature controller, and \(\approx 60 \) W for the laptop.

Table I

| Key Parameters in \(\text{CH}_4 \) and \(\text{C}_2\text{H}_6 \) Detection |
|-----------------|------------------|
| **ICL #1** | **ICL #2** |
| Center wavelength | 3291 nm | 3337 nm |
| Operation temperature | 30.95°C | 10°C |
| Temperature tuning coefficient | -0.240 cm\(^{-1}\)/°C | -0.301 cm\(^{-1}\)/°C |
| Current tuning coefficient | -0.232 cm\(^{-1}\)/mA | -0.142 cm\(^{-1}\)/mA |
| Target absorption line | 3038.5 cm\(^{-1}\) | 2996.88 cm\(^{-1}\) |
| Detection pressure | 700 Torr | 100 Torr |
| Technique | LDAS | 2f/WMS |
| Target gas | \(\text{CH}_4 \) | \(\text{C}_2\text{H}_6 \) |

C. LabVIEW-Based Data-Processing System

Data sampling and processing were realized on a LabVIEW-based platform, whose function diagram is shown in Fig. 3. For \(\text{CH}_4 \) detection, we used a similar but simpler technique as compared with Ref. [2]. After normalization of the absorption signal, a Lorentzian fitting was performed on the normalized absorption signal without using any spectral data from HITRAN for absorption fitting. Fig. 4(a) shows the Lorentzian fitting curves at different concentration levels of 1.0, 1.2, 1.4, 1.6 and 2.1 ppmv. The raw data (red dots) of the normalized absorption at 2.1 ppmv \(\text{CH}_4 \) was shown in Fig.3(a).

For \(\text{C}_2\text{H}_6 \) detection, the output signal from the detector as well as two frequency-doubled orthogonal signals synchronized by the modulation signal was sent to a lock-in module. A “R” signal with a positive bias was generated. For data processing, we removed the baseline from the “R” signal.

Fig. 1. HITRAN-based absorption spectra of \(\text{H}_2\text{O} \) (2%), \(\text{C}_2\text{H}_5 \) (10 ppbv) and \(\text{CH}_4 \) (1.8 ppmv) in a narrow spectral range. The lines of \(\text{H}_2\text{O}, \text{C}_2\text{H}_5 \) and \(\text{CH}_4 \) are shown in red, green and blue, respectively. (a) Wavenumber range from 3037.5 cm\(^{-1}\) to 3039.5 cm\(^{-1}\) for a 5460 cm path length at a pressure of 700 Torr. (b) Wavenumber range from 2996.0 cm\(^{-1}\) to 2998.0 cm\(^{-1}\) for a 5460 cm path length at a pressure of 100 Torr.

Fig. 2. Block diagram of the dual-gas \(\text{CH}_4/\text{C}_2\text{H}_6 \) sensor system. SG: signal generation; SA: signal acquisition; AF: absorption fitting; HE: harmonic extraction; CD: concentration decision.

B. Sensor Structure and Configuration

Fig. 2 shows the diagram of the dual-gas sensor system, where the upper part is the \(\text{CH}_4 \) sensor system and the lower part is the \(\text{C}_2\text{H}_6 \) sensor system. Two Nanoplus, CW, DFB ICLs mounted in TO66 headers emitting single-mode radiation at a center wavelength of 3291 nm (ICL #1) and 3337 nm (ICL #2) were employed. Detailed parameters of the two ICLs are shown in Table I. The two optical sensor systems possess similar designs. The infrared laser beam and a visible alignment beam (not shown) were combined by means of a dichroic mirror (DM, ISO optics, model BSP-DI-25-3). The combined beams were coupled into a MPGC using a mode matching lens (L) with 200-mm focal length. Two plane mirrors (M) fold the necessary optical path into a reduced space. An effective optical path length of 54.6 m was obtained after 435 beam passes. The exiting ICL beam from the MPC was focused onto a mercury-cadmium-telluride (MCT) detector (Vigo, PVI-4TE-4) using a 35-mm focal length parabolic mirror (PM).
via a subtraction operation, and obtained a $2f$ signal biased at zero. The $2f$ signals at different C$_2$H$_6$ concentration levels from 10-100 ppbv are shown in Fig. 4(b).

By integrating the $2f$ signal over a period of τ, the measured concentration can be calculated. The concentration was calculated as the peak area after integrating the measured signal. The concentration was calculated using the following equation:

$$C = \frac{A}{T}$$

where A is the peak area, T is the integration time, and C is the concentration.

The concentration was also measured using the calibrated C$_2$H$_6$ sensor, as shown in Fig. 6(a). The sensor shows a good linear relation between the concentration and the theoretical value. Measurements of the C$_2$H$_6$ sample with a concentration of 30 ppbv over a period of ~0.5 hour were carried out with a sampling period of 3.4 s, as shown in Fig. 6(b). The Allan deviation was also measured. The Allan deviation is shown in Fig. 6(c) as a function of averaging time τ. The Allan deviation is ~2.6 ppbv with a 3.4 s averaging time.

B. C$_2$H$_6$ Sensor

Six C$_2$H$_6$ samples with concentration levels of 0, 10, 30, 50, 70, and 90 ppbv were generated by diluting a 1.14 ppmv C$_2$H$_6$ sample balanced by N$_2$. Their concentrations were measured using the calibrated C$_2$H$_6$ sensor, as shown in Fig. 5(a). The sensor shows a good linear relation between the concentration reading and the theoretical value. Measurements of the C$_2$H$_6$ sample with a concentration of 30 ppbv over a period of ~0.5 hour were carried out with a sampling period of 3.4 s, as shown in Fig. 5(b). The Allan deviation was shown in Fig. 5(b) as a function of averaging time τ. The Allan deviation is ~2.6 ppbv with a 3.4 s averaging time. Fig. 5(b) also shows an optimum averaging time of 65 s corresponding to a detection limit of ~359 parts-per-trillion by volume (pptv).

C. Dual-Gas Detection Using Diluted Gas Samples

The detection characteristic of the dual-gas sensor was further assessed using five generated C$_2$H$_6$ samples (200, 90, 50, 10, and 0 ppbv) using an Environics gas dilution system (Environics, Series 4040) and the standard 2.1 ppmv CH$_4$ sample. The results are shown in Fig. 7, where the time recording period for acquiring both a CH$_4$ and a C$_2$H$_6$ concentration is ~8 s. The CH$_4$ and C$_2$H$_6$ gas streams were

Fig. 3. Function diagram of the LabVIEW-based data-processing system. DAC: digital-to-analog converter; ADC: analog-to-digital converter

Fig. 4. (a) Lorentzian fitting curves at five CH$_4$ concentration levels of 1.0, 1.2, 1.4, 1.6, and 2.1 ppmv. (b) The recorded $2f$ signal at ten different C$_2$H$_6$ concentration levels of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 ppbv. The integral time of the LabVIEW-based lock-in amplifier was set at 16 ms, and the modulation frequency was 5 kHz. Note that some data points were removed during the data-processing of the CH$_4$ and C$_2$H$_6$ spectra.

III. PERFORMANCE OF SENSOR SYSTEMS

A. CH$_4$ Sensor

Four CH$_4$ samples with concentration levels of 1.0, 1.2, 1.4, 1.6 ppmv were generated by diluting a 2.1 ppmv CH$_4$ sample balanced by N$_2$ using an Environics dilution system (Series 4040). The concentration levels of the four samples were measured using the CH$_4$ sensor, as shown in Fig. 5(a). The sensor readings performed linearly in agreement with the theoretical value. Measurements of the standard CH$_4$ sample with a 2.1 ppmv concentration over a period of ~10 minutes were performed with a sampling period of 1 s. Fig. 5(b) exhibits the measured concentration levels as a function of time τ, which shows a range of 2.11 ppm ± 0.1 ppmv. Fig. 5(c) shows the Allan-Werle deviation as a function of averaging time τ, based on the data depicted in Fig. 5(b) The 1σ detection limit is ~2.66 ppbv with a 1 s averaging time. Fig. 5(c) also shows an optimum averaging time of 9 s corresponding to a limit of ~1.66 ppbv.
switched using two valves to change the \(\text{CH}_4/\text{C}_2\text{H}_6/\text{N}_2 \) mixing ratio in the MPGC. These results demonstrate the operation of the dual-gas sensor for monitoring both \(\text{CH}_4 \) and \(\text{C}_2\text{H}_6 \) simultaneously.

![Fig. 7. Concentration measurements on CH4/C2H6/N2 mixtures using the dual-gas sensor system](image)

Fig. 7. Concentration measurements on \(\text{CH}_4/\text{C}_2\text{H}_6/\text{N}_2 \) mixtures using the dual-gas sensor system

![Fig. 8. Monitoring on atmospheric CH4 and C2H6 for 48 hours’ period in the Greater Houston area](image)

Fig. 8. Monitoring on atmospheric \(\text{CH}_4 \) and \(\text{C}_2\text{H}_6 \) for 48 hours’ period in the Greater Houston area

D. Atmospheric \(\text{CH}_4 \) and \(\text{C}_2\text{H}_6 \) Monitoring

The sensor system was evaluated for simultaneous detection of atmospheric \(\text{CH}_4 \) and \(\text{C}_2\text{H}_6 \) on the Rice University campus. The outside air was pumped into the gas cell using a long sampling line. The measured concentrations are plotted in Fig. 8. The experiment was conducted for ~ 24 hours. Fluctuations in concentration levels were observed during the atmospheric monitoring of \(\text{CH}_4 \) and \(\text{C}_2\text{H}_6 \). The \(\text{C}_2\text{H}_6 \) concentration ranged between 0 and 27.6 ppbv, with an average value of 8.4 ± 4.6 ppbv. The \(\text{CH}_4 \) concentration varied from 2.1 to 4.4 ppmv, with an average value of 2.7 ± 0.5 ppmv. The detected \(\text{CH}_4 \) concentration levels exhibited a typical hourly profile expected for this gas species, which is in agreement with previous research work [1]. This behavior is related to boundary layer dynamics and the extent of atmospheric mixing. \(\text{C}_2\text{H}_6 \) concentration levels peaked during early morning hours resembling diurnal trends observed for \(\text{CH}_4 \). Furthermore, point emission sources of \(\text{CH}_4 \) and \(\text{C}_2\text{H}_6 \) in the Greater Houston area are responsible for minor concentration peaks observed during the monitoring period.

IV. DISCUSSIONS AND CONCLUSIONS

Table II lists the performance of several reported laser based trace sensors and the reported dual-gas sensor. Since the sensors used different absorption lines and pressures, the detection limits (DLs) are also different for the same gas species. A relatively low DL (ppb level) for both gas species was achieved by the reported sensor as compared with other laser based sensors.

Table II

Comparison among Several \(\text{CH}_4 \) and \(\text{C}_2\text{H}_6 \) Sensors

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Gas</th>
<th>Laser</th>
<th>EPL</th>
<th>DL</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6]</td>
<td>(\text{CH}_4)</td>
<td>Diode</td>
<td>100 m</td>
<td>240 ppbv @ 1 s</td>
<td>250 Torr</td>
</tr>
<tr>
<td>[9]</td>
<td>(\text{CH}_4)</td>
<td>QCL</td>
<td>57.6 m</td>
<td>24.0 ppbv @ 1 s</td>
<td>40 Torr</td>
</tr>
<tr>
<td>[10]</td>
<td>(\text{CH}_4)</td>
<td>QCL</td>
<td>76 m</td>
<td>8.5 ppbv @ 2 s</td>
<td>100 Torr</td>
</tr>
<tr>
<td></td>
<td>(\text{C}_2\text{H}_6)</td>
<td>ICL</td>
<td>54.6 m</td>
<td>1.7 ppbv @ 5.4 s</td>
<td>100 Torr</td>
</tr>
<tr>
<td></td>
<td>(\text{C}_2\text{H}_6)</td>
<td>ICL</td>
<td>54.6 m</td>
<td>2.7 ppbv @ 1 s</td>
<td>700 Torr</td>
</tr>
</tbody>
</table>

In conclusion, we demonstrated the development and performance evaluation of a dual-gas sensor system using TLS technique based on two ICLs. The 1σ detection limit of \(\text{CH}_4 \) is ~ 2.7 ppbv with a 1 s averaging time and reaches a minimum value of ~ 1.7 ppbv with a 65 s averaging time. The 1σ detection limit of \(\text{C}_2\text{H}_6 \) is ~ 2.6 ppbv with a 3.4 s averaging time and shows an optimum averaging time of 65 s corresponding to a concentration of ~ 359 ppbv. Long-term monitoring of these two atmospheric gases was performed in the Greater Houston area. The sensor shows potential application in environmental monitoring, medical diagnostics and industrial process control.

REFERENCES

