Optical emission and kinetic reactions of a four-atomic rare gas halide exciplex: Ar₃F

R. Sauerbrey, Y. Zhu, F. K. Tittel, and W. L. Wilson, Jr.

Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251-1892

(Received 27 March 1986; accepted 25 April 1986)

A new broadband emission from electron beam excited high pressure Ar/F_2 and Ar/NF_3 mixtures at (435 \pm 50) nm is reported. This gas phase spectrum as well as a previously unassigned broadband emission at (455 \pm 55) nm observed in optically excited liquid Ar/F_2 mixtures is assigned to the four-atomic rare gas halide exciplex Ar_3F . Ar_3F is produced by three-body collisions from Ar_2F , but is easily destroyed by two-body collisions due to its small binding energy.

I. INTRODUCTION

After the discovery of diatomic rare gas halide excimers, extensive spectroscopic studies soon revealed the existence of the triatomic rare gas halides Rg₂X.^{1,2}

Ab initio and diatomics-in-molecule calculations showed that the exciplexes Rg_2X have a triangular shape and may be described as a bound state of a diatomic rare gas ion Rg_2^+ and a halogen ion X^- .³⁻⁶ Since the triatomic rare gas ions Rg_3^+ are bound with respect to their diatomics by about 0.2–0.3 eV, ⁷⁻⁹ one could expect that the four-atomic rare gas halides Rg_3X are stable at room temperature.

This work presents spectroscopic evidence for the existence of the four-atomic rare gas halide exciplex Ar_3F . The spectroscopic assignment is confirmed by a reinvestigation of the kinetic reactions of the trimer Ar_2F . The kinetic reactions of electron beam excited mixtures of argon and a fluorine donor were investigated in detail by Marowsky et al. ¹⁰ and Böwering et al. ¹¹ Both groups found abnormalities in the temporal pulse shapes of Ar_2F , in particular, at high electron densities that can now be explained by electron quenching. ¹² Furthermore, in both investigations the Ar_2F intensity became constant for high argon pressures, suggesting that Ar_2F is not the exciplex with the lowest energy in these mixtures.

II. EXPERIMENTS

Gas mixtures consisting of high purity argon (99.9995%), F₂ and NF₃, were transversely pumped by a pulsed electron beam. The typical maximum electron current density on the optical axis of the gas cell was 200 A/cm² as measured by a Faraday cup probe and a calorimeter. The maximum electron energy was 1 MeV and the pulse width was 10 ns. An area of 10×2 cm was irradiated by the electron beam. The time-integrated fluorescence spectra were recorded by an optical multichannel analyzer (OMA III) using a 0.25 nm Jarrel-Ash spectrometer with 0.5 nm resolution. The spectral sensitivity of this detection system is almost wavelength independent between about 400-550 nm; however, its sensitivity decreases sharply between 400-350 nm, as well as beyond 650 nm. The time dependence of the fluorescence of the ArF and Ar₂F transitions at 193 and 285 nm, respectively, as well as a new blue continuum at 435 nm, was measured using either a fast vacuum photodiode (ITT

F4000) or a photomultiplier (RCA C3100A). Spectral selection was obtained with appropriate interference and color glass filters. The fluorescence pulses were recorded by a transient digitizer (Tektronix R7912). The rise time of the photodiode detection system was about 2 ns, and that of the photomultiplier was less than 3 ns. The data from the OMA and the transient digitizer was stored and processed by two minicomputers.

III. RESULTS

Spectra of electron beam excited $Ar-F_2$ mixtures in the wavelength range from 200 to 550 nm are shown in Fig. 1. The well-known Ar_2F emission appears as a broadband with a maximum at 285 nm [Figs. 1(a) and 1(b)]. On the long wavelength side of Ar_2F , a broad continuum appears with a maximum at (435 ± 3) nm, and a spectral width of at least

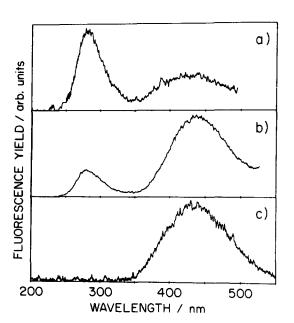


FIG. 1. Spectra from electron beam excited Ar/5 Torr F_2 mixtures between 200–550 nm. 1(a) and 1(b) show the Ar₂F emission centered at 285 nm as well as a new emission in the visible centered at 435 nm. The intensity of the new emission relative to the Ar₂F intensity increases considerably when the Ar pressure is increased from (a) 2 atm to (b) 8 atm. 1(c) shows the emission from a 3 atm Ar/5 Torr F_2 mixture observed through a color glass filter with a cutoff at about 350 nm. The Ar₂F spectrum disappears as well as the slight increase of the visible emission for wavelength larger than 480 nm, demonstrating that this is due to Ar₂F appearing in second order.

100 nm FWHM. The spectral shape of this emission is slightly narrowed on the short wavelength side due to the decreasing spectral sensitivity of the detection system. On the red side for wavelengths larger than 480 nm, the Ar_2F spectrum appears in second order.

It was shown in a number of experiments that the emission around 435 nm appears only when argon and a fluorine donor, either F_2 or NF_3 , are together in the gas mixture. The emission is not due to gas impurities. In particular, it is not caused by Kr_2F which shows a broadbanded emission in the same spectral region. However, the Kr_2F emission spectrum has its maximum at shorter wavelength (\sim 410 nm) and is much narrower. This emission is also not due to an emission around 220 nm appearing in second order, which was verified by observing it through a color glass filter with a wavelength cutoff at about 350 nm [Fig. 1(c)]. It is also apparent from Figs. 1(a) and 1(b) that the blue emission increases strongly in intensity relative to the Ar_2F emission when the argon pressure is raised from 2 atm (a) to 8 atm (b).

The temporal development of the dominating emissions from electron beam excited argon/fluorine mixtures is shown in Fig. 2. The ArF(B-X) fluorescence at 193 nm follows the pumping pulse with a width of about 10 ns, indicating the rapid depopulation of this state by radiation and quenching processes. At high argon pressures ArF is mainly quenched by three-body collisions to Ar₂F. ^{10,11} Therefore, the Ar₂F fluorescence increases on a time scale given by the width of the ArF fluorescence. Subsequently, the Ar₂F fluorescence decreases exponentially with a decay time of about 100 ns. The new blue fluorescence continuum exhibits a temporal rise time on the order of the half-width of the Ar₂F fluorescence and decays on the same time scale or slower than the Ar₂F fluorescence. This is shown clearly in Fig. 3. For increasing fluorine pressure, the Ar₂F decay frequency increases linearly. For small fluorine pressures, the decay of the blue fluorescence follows the Ar₂F decay, whereas the blue emission decays more slowly than Ar₂F for high F₂ pressures. This temporal behavior of the blue fluorescence indicates that Ar₂F is the precursor of the new species emitting the blue continuum.

The quenching constant of Ar_2F by F_2 may be obtained from Fig. 3. The value of 1.3×10^{-10} cm³ s⁻¹ is somewhat lower than the previously published values, ranging from 1.8×10^{-10} cm³ s⁻¹ to 2.1×10^{-10} cm³ s⁻¹.^{2,10,13} The quenching constant for the species causing the blue emission by F_2 may be estimated from the dashed line to be about 4×10^{-11} cm³ s⁻¹.

IV. ANALYSIS AND DISCUSSION

In summary, a broadband emission is observed on the long wavelength side of Ar_2F in electron beam excited Ar/F_2 mixtures, and Ar_2F is obviously the precursor of the species emitting the blue continuum. An exciplex consisting of more than two argon atoms and a fluorine atom is expected to have these properties. In the following kinetic analysis, it will be demonstrated that the experimental findings are consistent with an assignment of the blue continuum to the transition from the first electronically excited state in Ar_3F to its repulsive ground state.

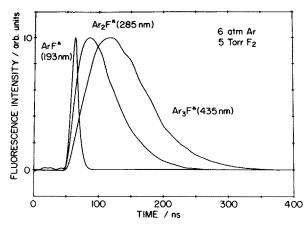


FIG. 2. Temporal dependence of normalized fluorescence signals from ArF, Ar₂F, and Ar₃F. Note the increase in the blue signal until the Ar₂F signal is well beyond its maximum.

An analysis of the geometry as well as the electronic structure of Ar_3F is difficult without further theoretical support. The center of the Ar_3F emission is shifted by about 1.5 eV relative to Ar_2F . The binding energy of Ar_3^+ relative to Ar_2^+ can only account for about 0.2 eV.⁷⁻⁹ Therefore, the large energy shift of the Ar_3F emission relative to the Ar_2F spectrum has to be attributed largely to a stronger repulsion of the Ar_3F lower potential than the Ar_2F lower state. This is qualitatively sustained by the relatively large bandwidth observed for the Ar_3F emission of at least 0.65 eV FWHM compared to the Ar_2F bandwidth of 0.31 eV FWHM (Fig. 1). There exists indirect experimental as well as theoretical evidence that the Rg_3^+ ions should be linear. However, for symmetry reasons, one should expect a tetrahedral structure (C_{3n}) of the Rg_3F exciplexes.

The binding energy of the Rg_3F molecule relative to the Rg_2F molecule is expected to be of the same order or even smaller than the binding energy of the Rg_3^+ relative to Rg_2^+ ions. It appears therefore reasonable to assume that Ar_3F may be easily destroyed by two-body collisions. On the other hand, in order to observe radiation from these molecules, they have to form a bound state. This is possible through three-body collisions with Ar_2F . Therefore, the following reaction equilibrium is expected:

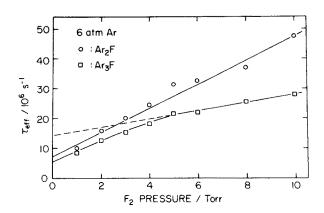


FIG. 3. Inverse decay time of Ar_2F (O) and Ar_3F (\square) as functions of the F_2 pressure. Ar_3F always decays more slowly than Ar_2F . For small F_2 pressures, the Ar_3F decay is determined by its precursor Ar_2F .

$$Ar_2F + 2Ar \underset{k \text{ Ar}, F}{\rightleftharpoons} Ar_3F + Ar. \tag{1}$$

This immediately explains earlier observations 10,11 showing the Ar_2F population density becoming argon pressure independent for high argon pressures, a behavior that is not expected for the lowest bound excimer state in any system. For several atmospheres of argon, three-body quenching of ArF by argon occurs on a subnanosecond time scale, 10,11,13 and ArF is almost completely converted to Ar_2F . Therefore, the Ar_2F density is proportional to the pumping density, which is in first order proportional to the argon pressure. For sufficiently high argon pressures, the depopulation processes of Ar_2F scale as the square of the argon pressure, whereas the back reaction from Ar_3F increases the Ar_2F density proportional to the argon pressure [Eq. (1)]. This yields a constant Ar_2F population in the limit of high argon pressures, which was, in fact, observed.

Since the binding energy of Ar_n^+ clusters with n>3 with respect to Ar_3^+ is smaller than 0.05 eV, 8 Ar_nF complexes with n>3 are expected to be thermally unstable. Ar_3F is, therefore, the lowest bound state in the electron beam excited Ar/F_2 system. Its intensity should increase proportional to the argon pressure in the limit of high argon pressures because the energy input is approximately proportional to the argon pressure. A detailed kinetic analysis yields, for the time-integrated fluorescence signals I_{Ar_2F} and I_{Ar_3F} , as measured by the OMA:

$$\frac{I_{Ar,F}}{I_{Ar,F}} = \frac{\tau_{Ar,F}}{\tau_{Ar,F}} \cdot \frac{k_{Ar,F}^{2Ar} [Ar]^2}{\tau_{3}^{-1} + k_{Ar,F}^{Ar} [Ar]}.$$
 (2)

 au_{Ar_2F} and au_{Ar_3F} are the radiative lifetimes of Ar_2F and Ar_3F , respectively; au_3 is the effective lifetime of Ar_3F including quenching, i.e., by the fluorine donor. The rate constants are defined in Eq. (1), and [Ar] denotes the argon concentration. It follows that $I_{Ar_3F} \sim [Ar]$ for $k_{Ar_3F}^{Ar}[Ar] \gg au_3^{-1}$, in agreement with the previous discussion.

When $I_{Ar,F}$ [Ar]²/ $I_{Ar,F}$ is plotted vs the argon pressure, a straight line with a positive intersection on the vertical axis is predicted from Eq. (2). Experimental results extracted from spectra like those presented in Fig. 1 are shown in Fig. 4. The experiment agrees well with Eq. (2).

If the blue emission is due to Ar₃F and Ar₃F is the lowest bound state in electronically excited Ar/F₂ mixtures, the emission should also be present in liquids where collisional processes proceed even more rapidly than in gases at pressures of a few atmospheres.

The fluorescence spectra obtained for optically excited liquid Ar/F_2 mixtures by Jara et al. ¹⁴ exhibit an unassigned fluorescence around 455 nm, with a bandwidth (FWHM) of 110 nm. Considering the red shift and broadening of the liquid phase emissions relative to the gas phase emissions observed for other rare gas halide species, the 455 nm band in liquid Ar/F_2 mixtures may be assigned to the Ar_3F emission. Jara et al. ¹⁴ also observed a weak and somewhat narrower spectrum around 445 nm in liquid N_2/F_2 mixtures. In the gas phase experiments of this work, no notable emission from N_2/F_2 mixtures was obtained in this wavelength range.

If Ar₃F exists as a bound state, Kr₃F and Xe₃F should

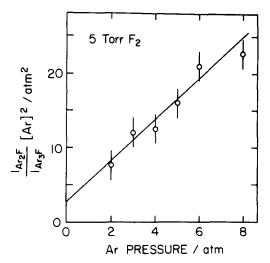


FIG. 4. $I_{Ar,F}$ ·[Ar]²/ $I_{Ar,F}$ as functions of the argon pressure [see Eq. (2)]. The experiment yields a straight line with positive intersection—an expected result for the equilibrium given in Eq. (1).

also be stable due to the higher binding energies of the krypton and xenon trimer ions relative to their dimer ions. ^{8,9} If the energy shift from Kr_2F to Kr_3F is assumed to about the same as the Ar_2F - Ar_3F shift of about 1.5 eV, the Kr_3F emission is expected in the 800 nm region. An emission from Xe_3F should appear even further in the infrared, assuming that these molecules do not predissociate due to a crossing of potential surfaces correlating to the ground state with the lowest excited state. An experimental search for Kr_3F in the wavelength region between 450–650 nm did not reveal any broadband emission from Kr/F_2 mixtures that could be assigned to Kr_3F .

V. SUMMARY AND CONCLUSIONS

A new broadband emission in the blue, observed from electron beam excited Ar/F_2 and Ar/NF_3 mixtures, has been assigned to Ar_3F . Although the structure and electronic states of this exciplex are not yet quite clear, the kinetic behavior of this species appears to allow for a unique assignment. This is confirmed by the observation of a similar emission from liquid Ar/F_2 mixtures.¹⁴

The existence of four atomic rare gas halide exciplexes could have a profound impact on the scaling behavior of rare gas halide lasers. The KrF laser still suffers from not yet completely understood nonsaturable absorptions, possibly due to Kr₂F, in particular, for high Kr concentration laser schemes. 15,16 Recently, doubts have been raised whether these absorptions are mainly caused by Kr₂F because the absorption cross section of this molecule appears to be too small to account for the observed effects. 17 Four atomic rare gas halide exciplexes such as Ar₃F or Kr₃F are likely to appear in high concentrations in high-pressure laser systems, in particular, Kr₃F in krypton-rich KrF lasers. In order to estimate their influence on the laser process, especially as absorbers of the laser radiation, theoretical efforts to understand their electronic structure, as well as experiments to determine their absorption behavior, appear necessary.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge helpful discussions with W. L. Nighan, as well as the skillful experimental assistance of J. KinrossWright and B. Zook. The work was supported by the National Science Foundation, the Office of Naval Research, and the Welch Foundation.

- ¹D. C. Lorents, D. L. Huestis, M. V. McCusker, H. H. Nakano, and R. M. Hill, J. Chem. Phys. **68**, 4657 (1978).
- ²D. L. Huestis, G. Marowsky, and F. K. Tittel, in *Excimer Lasers, Topics in Applied Physics*, edited by C. K. Rhodes (Springer, New York, 1984), Vol. 30
- ³D. L. Huestis and N. E. Schlotter, J. Chem. Phys. 69, 3100 (1978).
- ⁴W. R. Wadt and P. J. Hay, Appl. Phys. Lett. 30, 573 (1977).
- ⁵H. H. Michels, R. H. Hobbs, and L. A. Wright, J. Chem. Phys. **71**, 5053 (1979).

- ⁶W. R. Wadt and P. J. Hay, J. Chem. Phys. 68, 3850 (1978).
- ⁷D. L. Turner and D. C. Conway, J. Chem. Phys. 71, 1899 (1979).
- ⁸P. M. Dehmer and S. T. Pratt, J. Chem. Phys. 76, 843 (1982).
- ⁹W. R. Wadt, Appl. Phys. Lett. 38, 1030 (1981).
- ¹⁰G. Marowsky, G. P. Glass, F. K. Tittel, K. Hohla, W. L. Wilson, Jr., and H. Weber, IEEE J. Quantum Electron. 18, 898 (1982).
- ¹¹N. Böwering, R. Sauerbrey, and H. Langhoff, J. Chem. Phys. 76, 3524 (1982).
- ¹²R. Sauerbrey, Proceedings of the 2nd ILS conference, Seattle, Washington, 1986 (to be published).
- ¹³C. H. Chen, M. G. Payne, and J. P. Judish, J. Chem. Phys. 69, 1626 (1978).
- ¹⁴H. Jara, H. Pummer, H. Egger, and C. K. Rhodes, Phys. Rev. B 30, 1 (1984).
- ¹⁵T. F. Johnson, Jr. and A. M. Hunter II, J. Appl. Phys. 51, 2406 (1980).
- ¹⁶E. T. Salesky and W. D. Kimura, Appl. Phys. Lett. 46, 927 (1985).
- ¹⁷K. Hakuta, H. Komari, N. Mukai, and H. Takuma, XIV IQEC, San Francisco, 1986.