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 2 

Abstract 1 

Simultaneous measurements of atmospheric NH3, HNO3, soluble gas-phase chloride, 2 

and aerosol species were made in Houston, TX, from August 5, 2010 to August 9, 3 

2010.  Gaseous NH3 was measured using a 10.4-µm external cavity quantum cascade 4 

laser-based sensor employing conventional photo-acoustic spectroscopy, while 5 

gaseous HNO3 and HCl were sampled using a mist chamber-ion chromatograph (IC) 6 

system.  Particle chemical composition was determined using a 7 

particle-into-liquid-sampler-IC system.  There was a large amount of variability in 8 

the mixing ratios of NH3 (3.0 ± 2.5 ppb), HNO3 (287.4 ± 291.6 ppt), and HCl (221.3 ± 9 

260.7 ppt).  Elevated NH3 levels occurred around mid-day when NH4
+ (0.5 ± 1.0 10 

µg/m3) and SO4
2- (4.5 ± 4.3 µg/m3) also increased considerably, indicating that NH3 11 

had a strong impact on aerosol particle mass.  By contrast, the formation of NH4NO3 12 

and NH4Cl was not observed during the campaign.  Power plant plumes were found 13 

to be potential contributors to the enhancements in NH3 under favorable 14 

meteorological conditions.  Increased particle number concentrations were predicted 15 

by the SAM-TOMAS model downwind of a large coal-fired power plant when NH3 16 

emissions based on these measurements were included.  This study shows that NH3 17 

mixing ratios in the polluted Houston atmosphere occasionally exceeded previous 18 

modeling predictions, suggesting the influence of both local and regional sources 19 

while also highlighting the potential importance of NH3 with respect to particle 20 

number concentration. 21 

Key words: ammonia, particulate matter, gas-particle partitioning, aerosol nucleation. 22 
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 3 

Introduction 1 

Ammonia (NH3) is widely present in the atmosphere due to many anthropogenic and 2 

natural sources (1), usually at trace concentration levels ranging from parts per trillion 3 

(ppt) to parts per billion (ppb).  However, agriculture (e.g., fertilizer application and 4 

animal husbandry) (2, 3) and industrial and motor vehicle (e.g., chemical production 5 

and traffic emission) (4, 5) activities contribute to significant increases in local and/or 6 

regional NH3 levels.  In addition, National Emissions Inventory air pollutant 7 

emissions trends data prepared by the United States Environmental Protection Agency 8 

(U.S. EPA) indicate that annual NH3 emissions from the source category of electric 9 

utilities have risen continuously since 2005.  Gaseous NH3 can increase particulate 10 

matter (PM) mass concentrations through the formation of ammonium salts such as 11 

ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), and ammonium 12 

chloride (NH4Cl) via chemical reactions with sulfuric, nitric, and hydrochloric acids, 13 

respectively.  Experiments also reveal that NH3 plays a vital role in aerosol 14 

nucleation events (6-8). 15 

The resultant PM affects the Earth’s radiation budget through direct and/or indirect 16 

effects and modifies the properties of clouds by serving as cloud condensation and/or 17 

ice nuclei (9).  Epidemiological studies also have demonstrated a strong correlation 18 

between human exposure to PM and increased rates of respiratory and cardiovascular 19 

illness and other adverse human health effects (10, 11).  Despite these implications 20 

for ammonia’s negative impacts on air quality, NH3 currently is not regulated under 21 

the National Ambient Air Quality Standards by the U.S. EPA.  As a result, there are 22 
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 4 

substantial uncertainties in spatial and temporal variations of NH3 due to the lack of 1 

ground-based observations. 2 

Conventional NH3 studies primarily have focused on the measurements near source 3 

areas (e.g., farms) (12, 13) using passive samplers (e.g., annular diffusion denuders) 4 

with off-line analysis (e.g., ion chromatography (IC)) (14, 15).  Newly developed 5 

NH3 instruments using laser spectroscopy and chemical ionization mass spectrometry 6 

have improved time resolution and detection limits and minimized human-induced 7 

errors (16, 17).  Meanwhile, relatively little previous work has investigated the effect 8 

of gas-particle partitioning of NH3 and the interaction between NH3 and acidic 9 

gaseous and particulate species due to a paucity of simultaneous datasets.  In 10 

addition, information about NH3 levels for the industrial and urban area of Greater 11 

Houston is still scarce.  Nowak et al. (18) conducted a 14-day aircraft measurement 12 

campaign including atmospheric NH3 along the Houston Ship Channel (HSC) area 13 

during the second Texas Air Quality Study (TexAQS II).  Gong et al. (19) 14 

characterized the seasonal and diurnal patterns of gaseous NH3 levels in Houston.  15 

According to a photochemical model, the estimated NH3 mixing ratios for the 16 

Houston area are in the range of 1 to 15 ppb (20).  In order to examine the effects of 17 

NH3 on air quality in Houston, measurements of gas-phase NH3, nitric acid (HNO3), 18 

soluble chloride (assumed to be hydrochloric acid (HCl)), and aerosol species were 19 

performed during the summer of 2010 by simultaneous on-line gas- and particle-phase 20 

instrumentation. 21 

 22 
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 5 

Materials and Methods 1 

In this study, the simultaneous measurements of trace gases and particle chemical 2 

composition were carried out from August 5, 2010 to August 9, 2010.  All 3 

instruments were deployed in a trailer atop an 18-story (~65 m above ground level) 4 

building (North Moody Tower) located on the University of Houston (UH) main 5 

campus, which is influenced by many local and regional emission sources such as 6 

highways, airports, and industrial facilities.  Detailed information about this 7 

sampling site can be found in Lefer and Rappenglück (21).  Meteorological 8 

parameters (e.g., temperature and relative humidity) as well as mixing ratios of some 9 

important air pollutants (e.g., carbon monoxide (CO)) are measured regularly by the 10 

UH research group at this location (22, 23).  All data were averaged into 1-hr 11 

intervals for temporal consistency. 12 

 13 

Gaseous species measurements 14 

Gas-phase NH3 was measured using a 10.4-µm external cavity quantum cascade 15 

laser-based sensor employing conventional photo-acoustic spectroscopy as described 16 

in Gong et al. (19).  This state-of-the-art optical technique achieves a sub-ppb 17 

detection limit with a response time of seconds and an accuracy of ~6%.  Gas-phase 18 

HNO3 and HCl were measured using a mist chamber together with IC (Dionex, Model 19 

CD20-1), where the minimum detection limits of ppt levels were reached for a 20 

temporal resolution of 10 minutes with an uncertainty of ±10% (23, 24). 21 

 22 
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 6 

Aerosol species measurements 1 

Particle chemical composition was measured using a particle-into-liquid-sampler 2 

(PILS) (BMI, Model 4002) coupled directly to two IC systems (Dionex, Model 1600) 3 

(25, 26).  Mass concentrations (µg/m3) of water soluble inorganic components 4 

including ammonium (NH4
+), sodium (Na+), potassium (K+), calcium (Ca2+), 5 

magnesium (Mg2+), sulfate (SO4
2-), nitrate (NO3

-), nitrite (NO2
-) and chloride (Cl-)  6 

in fine particle aerosols (Dp < 1 µm) were determined at 16-min intervals. 7 

 8 

Results and Discussion 9 

Effect of NH3 on Particle Mass Concentrations 10 

Figure 1 presents a time series of hourly-averaged mixing ratios (± one standard 11 

deviation) of gaseous NH3 (3.0 ± 2.5 ppb), HNO3 (287.4 ± 291.6 ppt), HCl (221.3 ± 12 

260.7 ppt) and CO (109.8 ± 22.4 ppb) and concentrations of particulate NH4
+ (0.5 ± 13 

1.0 µg/m3), SO4
2- (4.5 ± 4.3 µg/m3), NO3

- (0.3 ± 0.2 µg/m3) and Cl- (0.2 ± 0.1 µg/m3) 14 

along with meteorological parameters.  The NH3 mixing ratios are a subset of the 15 

data considered by Gong et al. (19).  NH3 levels were elevated around mid-day, 16 

when NH4
+ and SO4

2- also dramatically increased compared to other time periods of 17 

the measurements.  This suggests that NH3 played an important role in PM formation 18 

and that the gas-particle conversion was highly efficient when NH3 was available, 19 

though SO4
2- goes to the aerosol phase regardless of NH3 level.  However, NO3

- and 20 

Cl- concentrations did not change significantly throughout the campaign. 21 
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 7 

During these peaks, the wind mainly blew from the southwest in the direction of the 1 

second largest coal-fired power plant (W. A. Parish) in the U.S. (also verified by 2 

Hybrid Single-Particle Lagrangian Integrated Trajectory modeling (27)).  The 3 

average wind speed was about 10 miles per hour when these mid-day spikes occurred, 4 

leading to an inference that the electricity generating station, which is approximately 5 

23 miles (37 km) away from the sampling site, may be a source of NH3 in Houston 6 

during this period.  The selective catalytic reduction (SCR) technique was installed 7 

to control nitrogen oxides (NOx) emissions from Parish after 2000 (28).  Interestingly, 8 

no NH3 spikes in Parish plumes were reported by Nowak et al. (18).  Auxiliary data 9 

collected atop the Moody Tower were used to assist in NH3 source identification.  10 

For instance, primary pollutants such as CO emitted from automobile tailpipes are 11 

usually used as indicators of vehicular emissions.  Since the introduction of 12 

three-way catalytic converters, motor vehicles have contributed to elevated NH3 levels 13 

in urban areas (29, 30) when NOx is over-reduced inside the converters (31, 32).  14 

Nevertheless, no enhancements in CO were coincident with enhanced NH3 around 15 

mid-day, indicating that motor vehicles are less likely to cause elevated NH3 in 16 

Houston during this period. 17 

During the five days of measurements, there were no concurrent decreases in HNO3 18 

and HCl nor increases in NO3
- and Cl- when NH3 levels were elevated around mid-day, 19 

indicating that NH4NO3 and NH4Cl were not formed.  This speculation is verified by 20 

the very low saturation ratios (<< 1) illustrated in Figure 2.  The saturation ratio is 21 

the partial pressure product (
3 3NH HNOP P  or 

3NH HClP P ) divided by the dissociation 22 
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 8 

constant (
4 3NH NOK  or 

4NH ClK ) that can be calculated using empirical equations (33, 34) 1 

based on the reversible formation of NH4NO3 and NH4Cl (eqs 1 and 2). 2 

3 3 4 3( ) ( ) ( )NH g HNO g NH NO s or aq+ ↔                                  (1) 3 

3 4( ) ( ) ( )NH g HCl g NH Cl s or aq+ ↔                                     (2) 4 

Particulate NH4NO3 and NH4Cl condense when the saturation ratio is larger than one, 5 

and they evaporate when the saturation ratio is smaller than one.  This is in contrast 6 

to the study of Nowak et al. (18) during TexAQS II who observed NH4NO3 formation 7 

in HSC plumes with elevated NH3 levels ranging from 5 to 80 ppb, likely due to the 8 

shift in the thermodynamic equilibrium towards the aerosol phase caused by very high 9 

NH3 mixing ratios.  Because the time scales to achieve thermodynamic equilibrium 10 

for NH4NO3 and NH4Cl usually are on the order of minutes under ambient conditions 11 

(35, 36), the time since emission likely can be eliminated as the reason for the lack of 12 

NH4NO3 and NH4Cl formation in the present work.  However, relatively high 13 

temperatures (30.1 ± 2.3 oC) likely do inhibit the formation of NH4NO3 and NH4Cl 14 

because volatilization increases with temperature; by contrast, sulfate is considered 15 

essentially non-volatile (37).  The Aerosol Inorganics Model also was employed, and 16 

it yielded similar results for the calculation of thermodynamic equilibrium/gas-particle 17 

partitioning using measurement data from this study (38). 18 

A regression between measured molar concentrations of cations and anions yields a 19 

strongly linear relationship (Figure 3, R2 = 0.96; p < 0.0001; slope = 1.53), suggesting 20 

that SO4
2-, NO3

- and Cl- (The rest of the anions were minor.) were largely associated 21 

with NH4
+ (The rest of the cations other than H+ were minor.) and that ambient 22 
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 9 

aerosols were likely acidic as a result of incomplete neutralization.  However, the 1 

average value of the molar concentration ratio of gaseous NH3 to total NH3 (the sum 2 

of NH3 and NH4
+), also known as the gas fraction (σ = 0.86 ± 0.17), shows that NH3 3 

remained predominantly in the gas phase rather than the aerosol phase, as shown in 4 

Figure 4, although sampled aerosols were ammonium-poor. 5 

It is unlikely that aerosols are high in acid content when gaseous NH3 is prevalent in 6 

the atmosphere.  There may be cations present in aerosols not measured with the 7 

PILS-IC.  One, though not the only possible, hypothesis is that amines contribute to 8 

the cationic composition of PM.  Amines widely exist in the atmosphere from a 9 

variety of sources, and they are subject to physical and chemical processes such as 10 

gas-particle partitioning (39, 40).  It has been reported that aminium can displace 11 

NH4
+ in ammonium salts (41, 42).  In addition, the availability of amines enhances 12 

sulfuric acid-water (H2SO4-H2O) nucleation (43, 44), which may partially account for 13 

relatively high SO4
2- levels (up to 33.7 µg/m3) observed during the measurements.  If 14 

we assume that ambient aerosols are neutral and attribute all missing cations to 15 

aminium, the estimated required mixing ratio of gaseous amines is approximately 55 16 

ppb following the example in Ge et al. (40).  While this is a very large value, 17 

observed atmospheric amine mixing ratios range from ppt to hundreds of ppb levels; 18 

even parts per million (ppm) levels were found in power plant regions (45).  Some 19 

existing plants in the U.S. use amine-based solvent to capture post-combustion carbon 20 

dioxide (46).  However, to our knowledge, Parish currently uses only NH3 tank 21 

farms instead of amine technology.  Given the strong linear relationship between 22 
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 10 

measured anions and cations, the aminium concentrations would be correlated 1 

strongly with NH4
+ if present. 2 

It is also noted that the mean gas fractions for HNO3 (σ = 0.71 ± 0.14) and HCl (σ = 3 

0.72 ± 0.24) were larger than 0.5, as shown in Figure 4, indicating they existed mainly 4 

in the gas phase.  This observation may be attributed to the warm conditions during 5 

the measurements, which favor volatilization of NH4NO3 and NH4Cl.  Figure 5 6 

displays the molar concentration ratio of NH3 to the sum of HNO3 and HCl (11.3 ± 7 

9.5) over the entire course of sampling, indicating that NH3 was much more abundant 8 

than HNO3 and HCl. 9 

 10 

Effect of NH3 on Particle Number Concentrations 11 

Aerosol nucleation and growth in coal-fired power plant plumes can greatly contribute 12 

to particle number concentrations near source regions.  Stevens et al. (47) 13 

incorporated the TOMAS aerosol microphysics module (48, 49) into the SAM 14 

Large-Eddy Simulation/Cloud Resolving model (50) (SAM-TOMAS) and simulated 15 

aerosol nucleation and growth in the Parish power-plant plume.  In the present work 16 

we also used this model to investigate how NH3 emissions from power plants may 17 

affect the nucleation and growth of particles in the plume.  The model simulates the 18 

aerosol size distribution using 15 size bins segregated by dry mass per particle 19 

covering a size range from 3 nm to 10 µm and microphysical processes including 20 

coagulation, H2SO4 condensation, and nucleation (47).  Modeled H2SO4 vapor 21 

formation depends on SO2 and OH concentrations, and the OH concentrations in turn 22 
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 11 

depend on the amount of sunlight and the NOx concentrations. 1 

NH3 is considered to be a potentially important participant in aerosol nucleation and 2 

formation.  In order to evaluate the effects of NH3 on particle number concentration 3 

along the trajectory of power plant plumes, we hypothesize that elevated NH3 levels 4 

originated from NH3 slips at Parish, and we add NH3 emissions from the plant to the 5 

SAM-TOMAS simulations.  Two ternary (H2SO4-H2O-NH3) nucleation schemes, 6 

Merikanto et al. (51) and Napari et al. (52) (which is scaled by a factor of 10-5 to 7 

better agree with observations (53)), are tested in SAM-TOMAS.  Figure 6 shows 8 

twelve simulations from SAM-TOMAS under various environmental conditions.  It 9 

shows the number of new particles in the plume normalized by the SO2 emitted as a 10 

function of the distance downwind from the plant.  Both schemes were run with 900 11 

ppt and 0 ppt NH3 background mixing ratios.  In addition, three different NH3 12 

emission scenarios (high: 0.012 kg/s; medium: 0.007 kg/s; low: 0.0012 kg/s) were 13 

employed and tested based on the calculated range of NH3 emission factors (82,500 to 14 

825,000 lb/yr) from Parish based on vendor-estimated slip values (1 to 10 ppm) (54).  15 

In all simulations, the number of new particles reaches a maximum near 10 km 16 

downwind; beyond this point, concentrations decrease because coagulation rates 17 

exceed nucleation rates.  It can be seen that NH3 emissions are very important for 18 

new particle formation, especially in the simulations in which background NH3 19 

mixing ratios are low (i.e., the green and red lines show a large variation in nucleation 20 

between simulations with different NH3 emission rates).  When background NH3 21 

mixing ratios were larger, the simulated effect of NH3 emissions on nucleation was 22 
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 12 

more saturated and the predicted differences between NH3 emission scenarios were 1 

smaller.  Specifically, the fractional increases in particle concentrations between the 2 

low and high NH3 emission simulations at 50 km downwind were 1.1 for Merikanto’s 3 

nucleation scheme with 900 ppt NH3 background mixing ratio, 2.0 for Merikanto’s 4 

nucleation scheme with 0 ppt NH3 background mixing ratio, 1.2 for Napari’s 5 

nucleation scheme with 900 ppt NH3 background mixing ratio, and 2.5 for Napari’s 6 

nucleation scheme with 0 ppt NH3 background mixing ratio, respectively.  Larger 7 

NH3 emissions accelerate aerosol nucleation in the simulations, as the system exhibits 8 

a high sensitivity to the amount of NH3 slip, which emphasizes the significance of 9 

future NH3 measurements in areas near power plants that utilize SCR.  In addition, 10 

although Houston is currently in compliance with the mass-based PM2.5 standards, 11 

efforts to characterize particle number concentration and size distribution 12 

synchronously with measurements of gaseous and particulate species are needed to 13 

better understand NH3 impacts on both particle mass and number concentrations. 14 

 15 
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Figure 2.
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Figure 3.
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