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Abstract

Simultaneous measurements of atmospherig, MM O;, soluble gas-phase chloride,
and aerosol species were made in Houston, TX, #agust 5, 2010 to August 9,
2010. Gaseous NHvas measured using a 1Qudr external cavity quantum cascade
laser-based sensor employing conventional photasdico spectroscopy, while
gaseous HN@and HCI were sampled using a mist chamber-ionrohtograph (IC)
system. Particle  chemical composition was detesthin using a
particle-into-liquid-sampler-IC system. There wadarge amount of variability in
the mixing ratios of NKI(3.0+ 2.5 ppb), HNQ (287.4+ 291.6 ppt), and HCI (221.3 £
260.7 ppt). Elevated NHevels occurred around mid-day when NHO0.5 + 1.0
ng/m®) and S@ (4.5 + 4.3 ug/m°) also increased considerably, indicating thatsNH
had a strong impact on aerosol particle mass. dByrast, the formation of NAN O3
and NH,Cl was not observed during the campaign. Powart gdlumes were found
to be potential contributors to the enhancements NH; under favorable
meteorological conditions. Increased particle nemtoncentrations were predicted
by the SAM-TOMAS model downwind of a large coakfirpower plant when NH
emissions based on these measurements were inclu@iag study shows that NH
mixing ratios in the polluted Houston atmosphereaswnally exceeded previous
modeling predictions, suggesting the influence ofhblocal and regional sources
while also highlighting the potential importance NH; with respect to particle
number concentration.

Key words: ammonia, particulate matter, gas-particle partitignaerosol nucleation.
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Introduction

Ammonia (NH) is widely present in the atmosphere due to mamkiirapogenic and
natural sources (1), usually at trace concentrdéeels ranging from parts per trillion
(ppt) to parts per billion (ppb). However, agricue (e.g., fertilizer application and
animal husbandry) (2, 3) and industrial and moteiieie (e.g., chemical production
and traffic emission) (4, 5) activities contribuitesignificant increases in local and/or
regional NH levels. In addition, National Emissions Inventoayr pollutant
emissions trends data prepared by the United SEateéisonmental Protection Agency
(U.S. EPA) indicate that annual Nimissions from the source category of electric
utilities have risen continuously since 2005. @aseNH; can increase particulate
matter (PM) mass concentrations through the foonatif ammonium salts such as
ammonium sulfate ((NP.SO;), ammonium nitrate (NHNOs), and ammonium
chloride (NH,CI) via chemical reactions with sulfuric, nitricné hydrochloric acids,
respectively. Experiments also reveal thatsNplays a vital role in aerosol
nucleation events (6-8).

The resultant PM affects the Earth’s radiation midfprough direct and/or indirect
effects and modifies the properties of clouds hyiag as cloud condensation and/or
ice nuclei (9). Epidemiological studies also haegnonstrated a strong correlation
between human exposure to PM and increased ratespfatory and cardiovascular
illness and other adverse human health effects i1, Despite these implications
for ammonia’s negative impacts on air quality, \¢dirrently is not regulated under

the National Ambient Air Quality Standards by theSUEPA. As a result, there are
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substantial uncertainties in spatial and tempoaalations of NH due to the lack of
ground-based observations.

Conventional NH studies primarily have focused on the measurenresas source
areas (e.g., farms) (12, 13) using passive samfdegs annular diffusion denuders)
with off-line analysis (e.g., ion chromatograph)) (14, 15). Newly developed
NHs; instruments using laser spectroscopy and chenan&ation mass spectrometry
have improved time resolution and detection lingitel minimized human-induced
errors (16, 17). Meanwhile, relatively little preus work has investigated the effect
of gas-particle partitioning of NHand the interaction between RBlkAnd acidic
gaseous and particulate species due to a paucitginofiltaneous datasets. In
addition, information about Ndlevels for the industrial and urban area of Greate
Houston is still scarce. Nowak et al. (18) conddca 14-day aircraft measurement
campaign including atmospheric MNklong the Houston Ship Channel (HSC) area
during the second Texas Air Quality Study (TexAQ. | Gong et al. (19)
characterized the seasonal and diurnal patterrgaséous NEllevels in Houston.
According to a photochemical model, the estimatdds; Mnixing ratios for the
Houston area are in the range of 1 to 15 ppb (20).order to examine the effects of
NH;3 on air quality in Houston, measurements of gasehdH;, nitric acid (HNQ),
soluble chloride (assumed to be hydrochloric atl€lf), and aerosol species were
performed during the summer of 2010 by simultaneiBne gas- and particle-phase

instrumentation.
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Materialsand Methods

In this study, the simultaneous measurements cketgases and particle chemical
composition were carried out from August 5, 2010 Aagust 9, 2010. All
instruments were deployed in a trailer atop antb8¢s(~65 m above ground level)
building (North Moody Tower) located on the Univgysof Houston (UH) main
campus, which is influenced by many local and regieemission sources such as
highways, airports, and industrial facilities. Bi&td information about this
sampling site can be found in Lefer and Rappengl{Zk). Meteorological
parameters (e.g., temperature and relative huridgywell as mixing ratios of some
important air pollutants (e.g., carbon monoxide JIC&e measured regularly by the
UH research group at this location (22, 23). A#itad were averaged into 1-hr

intervals for temporal consistency.

Gaseous species measurements

Gas-phase NHwas measured using a 1Qudr external cavity quantum cascade
laser-based sensor employing conventional photasdicospectroscopy as described
in Gong et al. (19). This state-of-the-art opti¢athnique achieves a sub-ppb
detection limit with a response time of seconds améccuracy of ~6%. Gas-phase
HNO; and HCI were measured using a mist chamber togeiitie IC (Dionex, Model
CD20-1), where the minimum detection limits of gpvels were reached for a

temporal resolution of 10 minutes with an uncetiaof £10% (23, 24).
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Aerosol species measurements

Particle chemical composition was measured usingawicle-into-liquid-sampler
(PILS) (BMI, Model 4002) coupled directly to two Kystems (Dionex, Model 1600)
(25, 26). Mass concentrationsug/m®) of water soluble inorganic components
including ammonium (N&), sodium (N&), potassium (K), calcium (C&),
magnesium (M%), sulfate (SG), nitrate (NQ), nitrite (NQy) and chloride (C)

in fine particle aerosols (< 1 um) were determined at 16-min intervals.

Results and Discussion

Effect of NH3 on Particle M ass Concentr ations

Figure 1 presents a time series of hourly-averagedng ratios (+ one standard
deviation) of gaseous NH3.0 £ 2.5 ppb), HNQ (287.4 + 291.6 ppt), HCI (221.3 £
260.7 ppt) and CO (109.8 + 22.4 ppb) and conceatrsitof particulate N (0.5 +
1.0 pg/m®), SQF (4.5 + 4.3ug/n), NO; (0.3 + 0.2ug/m’) and C1 (0.2 + 0.1ug/m’)
along with meteorological parameters. ThesNhixing ratios are a subset of the
data considered by Gong et al. (19). Nievels were elevated around mid-day,
when NH" and SG* also dramatically increased compared to other fieréods of
the measurements. This suggests thaj plelyed an important role in PM formation
and that the gas-particle conversion was highliciefit when NH was available,
though S@ goes to the aerosol phase regardless of Is¢€l. However, N@ and

CI" concentrations did not change significantly thiomgt the campaign.
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During these peaks, the wind mainly blew from tbatewest in the direction of the
second largest coal-fired power plant (W. A. Parishthe U.S. (also verified by
Hybrid Single-Particle Lagrangian Integrated Trégeg modeling (27)). The
average wind speed was about 10 miles per hour #iese mid-day spikes occurred,
leading to an inference that the electricity getiegastation, which is approximately
23 miles (37 km) away from the sampling site, mayabsource of Nglin Houston
during this period. The selective catalytic retutt(SCR) technique was installed
to control nitrogen oxides (NPemissions from Parish after 2000 (28). Intenegyi
no NH; spikes in Parish plumes were reported by Nowal.€gt18). Auxiliary data
collected atop the Moody Tower were used to assistiHz source identification.
For instance, primary pollutants such as CO emifteth automobile tailpipes are
usually used as indicators of vehicular emission&ince the introduction of
three-way catalytic converters, motor vehicles hawatributed to elevated NHevels

in urban areas (29, 30) when N@ over-reduced inside the converters (31, 32).
Nevertheless, no enhancements in CO were coincid#htenhanced Niaround
mid-day, indicating that motor vehicles are ledely to cause elevated NHn
Houston during this period.

During the five days of measurements, there wereamzurrent decreases in HNO
and HCI nor increases in NGand Clwhen NH levels were elevated around mid-day,
indicating that NENO3; and NH,CI were not formed. This speculation is verifigd b
the very low saturation ratios (<< 1) illustratedRigure 2. The saturation ratio is

the partial pressure producty, B, or B, B) divided by the dissociation
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constant Ky, v, OF Kyp,c) that can be calculated using empirical equat(88s34)
based on the reversible formation of MD; and NHCI (eqs 1 and 2).

NH,(g)+ HNO( 9 - NH, NQ( soraj (1)
NH,(g)+ HCI(g) -~ NH,Clsoraq (2)
Particulate NEINO3z; and NHCI condense when the saturation ratio is largen thee,
and they evaporate when the saturation ratio idlenthan one. This is in contrast
to the study of Nowak et al. (18) during TexAQSvho observed NENO; formation

in HSC plumes with elevated NHevels ranging from 5 to 80 ppb, likely due to the
shift in the thermodynamic equilibrium towards #erosol phase caused by very high
NHs mixing ratios. Because the time scales to achiegemodynamic equilibrium
for NH;NO3z; and NHCI usually are on the order of minutes under antlgenditions
(35, 36), the time since emission likely can benaglated as the reason for the lack of
NH4NO; and NHCI formation in the present work. However, relatw high
temperatures (30.1 + 2%&) likely do inhibit the formation of NEINO; and NHCI
because volatilization increases with temperatbhyerontrast, sulfate is considered
essentially non-volatile (37). The Aerosol InorganModel also was employed, and
it yielded similar results for the calculation betmodynamic equilibrium/gas-particle
partitioning using measurement data from this si{3@y.

A regression between measured molar concentratibeations and anions yields a
strongly linear relationship (Figure B = 0.96;p < 0.0001; slope = 1.53), suggesting
that SQ*, NO; and ClI (The rest of the anions were minor.) were largegociated

with NH;" (The rest of the cations other thari Were minor.) and that ambient
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aerosols were likely acidic as a result of incorteleeutralization. However, the
average value of the molar concentration ratioasfepus Nkito total NH (the sum

of NHs; and NH"), also known as the gas fractian% 0.86 + 0.17), shows that NH
remained predominantly in the gas phase rather tiiaraerosol phase, as shown in
Figure 4, although sampled aerosols were ammonioon-p

It is unlikely that aerosols are high in acid coitethen gaseous NHs prevalent in
the atmosphere. There may be cations presentros@e not measured with the
PILS-IC. One, though not the only possible, hypsth is that amines contribute to
the cationic composition of PM. Amines widely déxis the atmosphere from a
variety of sources, and they are subject to ph{ysind chemical processes such as
gas-particle partitioning (39, 40). It has beeporged that aminium can displace
NH;" in ammonium salts (41, 42). In addition, the &kility of amines enhances
sulfuric acid-water (HSOs-H,0) nucleation (43, 44), which may partially accofort
relatively high S@ levels (up to 33.7ug/m°) observed during the measurements.  If
we assume that ambient aerosols are neutral antugdt all missing cations to
aminium, the estimated required mixing ratio ofegass amines is approximately 55
ppb following the example in Ge et al. (40). Whilds is a very large value,
observed atmospheric amine mixing ratios range fpptto hundreds of ppb levels;
even parts per million (ppm) levels were found ower plant regions (45). Some
existing plants in the U.S. use amine-based sokeecapture post-combustion carbon
dioxide (46). However, to our knowledge, Parishrently uses only NEl tank

farms instead of amine technology. Given the gfrbnear relationship between
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measured anions and cations, the aminium concemsatwould be correlated
strongly with NH," if present.

It is also noted that the mean gas fractions foOsIks = 0.71 + 0.14) and HCb(=
0.72 + 0.24) were larger than 0.5, as shown infeigy indicating they existed mainly
in the gas phase. This observation may be atéibtdg the warm conditions during
the measurements, which favor volatilization of /NI®; and NHCI. Figure 5
displays the molar concentration ratio of Ntd the sum of HN@and HCI (11.3 +
9.5) over the entire course of sampling, indicatimgt NH; was much more abundant

than HNQ and HCI.

Effect of NH3 on Particle Number Concentrations

Aerosol nucleation and growth in coal-fired powkmp plumes can greatly contribute
to particle number concentrations near source nsgio Stevens et al. (47)
incorporated the TOMAS aerosol microphysics mod(#8, 49) into the SAM
Large-Eddy Simulation/Cloud Resolving model (50AKETOMAS) and simulated
aerosol nucleation and growth in the Parish povemtgplume. In the present work
we also used this model to investigate howzMrhissions from power plants may
affect the nucleation and growth of particles ia gflume. The model simulates the
aerosol size distribution using 15 size bins seapext) by dry mass per particle
covering a size range from 3 nm to it and microphysical processes including
coagulation, HSO; condensation, and nucleation (47). ModelegS® vapor

formation depends on S@nd OH concentrations, and the OH concentratiorigrin
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depend on the amount of sunlight and the, M@nhcentrations.

NH; is considered to be a potentially important pgréint in aerosol nucleation and
formation. In order to evaluate the effects of Nith particle number concentration
along the trajectory of power plant plumes, we hkpsize that elevated NHevels
originated from NH slips at Parish, and we add Neimissions from the plant to the
SAM-TOMAS simulations. Two ternary @30,-H,O-NH3) nucleation schemes,
Merikanto et al. (51) and Napari et al. (52) (whishscaled by a factor of f0to
better agree with observations (53)), are teste8AM-TOMAS. Figure 6 shows
twelve simulations from SAM-TOMAS under various @ommental conditions. It
shows the number of new particles in the plume atimad by the S@emitted as a
function of the distance downwind from the planBoth schemes were run with 900
ppt and O ppt NE background mixing ratios. In addition, three eliéfint NH
emission scenarios (high: 0.012 kg/s; medium: 0.K§8; low: 0.0012 kg/s) were
employed and tested based on the calculated rdrge gemission factors (82,500 to
825,000 Ib/yr) from Parish based on vendor-estithatg values (1 to 10 ppm) (54).
In all simulations, the number of new particlesciees a maximum near 10 km
downwind; beyond this point, concentrations de@ehscause coagulation rates
exceed nucleation rates. It can be seen thaf éhissions are very important for
new particle formation, especially in the simulations in whiclackground NH
mixing ratios are low (i.e., the green and reddisBow a large variation in nucleation
between simulations with different NHemission rates). When background JNH

mixing ratios were larger, the simulated effectNdl; emissions on nucleation was
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more saturated and the predicted differences bethd€ emission scenarios were
smaller. Specifically, the fractional increasegarticle concentrations between the
low and high NH emission simulations at 50 km downwind were 1riMerikanto’s
nucleation scheme with 900 ppt BlHackground mixing ratio, 2.0 for Merikanto’s
nucleation scheme with 0 ppt NHdackground mixing ratio, 1.2 for Napari's
nucleation scheme with 900 ppt RHackground mixing ratio, and 2.5 for Napari’'s
nucleation scheme with 0 ppt NHbackground mixing ratio, respectively. Larger
NH3 emissions accelerate aerosol nucleation in thalations, as the system exhibits
a high sensitivity to the amount of NHlip, which emphasizes the significance of
future NH; measurements in areas near power plants thateu8ICR. In addition,
although Houston is currently in compliance witle thass-based P standards,
efforts to characterize particle number concemratiand size distribution
synchronously with measurements of gaseous andylate species are needed to

better understand NHmpacts on both particle mass and number condentsa
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List of figures

Figure 1. Hourly-averaged mixing ratios of NH HNO;, HClI and CO and
concentrations of N, SQ%, NOs and Cl as well as meteorological parameters
during the measurements.

Figure 2. Time series of the saturation ratios of JNKD; and NHCI.
S= PNH3 FI)-INQ/ KNH4NQ or F?\H-g FP)-ICI/ KNH4CI

where S is saturation ratio; P is partial presskirs; dissociation constant.
K=exp[84.6-24220/T-6.1In(T/298)] for NAMIOs
K=exp[2.2358InT-2.13204* 110 1+65.437516-8.16 7* 18T +4.64383*10' T2
-1.10475*10°T3] for NH.CI

where T is temperature in Kelvin.

Figure 3. Linear relationship between measured cations amahs.

Figure 4. Time series of gas fractions for NHHNO; and HCI.

Figure5. Time series of the ratio of NHo the sum of HN@and HCI.

Figure 6. The number of particles formed by nucleation i@ Brarish plume per SO
mass emitted as a function of the distance downivord the Parish plant.
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