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Abstract. Feedback controlled self-excitation of optical pulses of nanosecond duration has 
been observed to occur rather reliably in a CW dye ring laser, oscillating in a traveling mode. 
These observations are described analytically by means of a direct time domain approach. It 
is shown that a steady-state Gaussian pulse whose time duration determined from the self 
consistency condition in terms of system characteristics describes accurately the observed 
pulse behaviors. 

PACS: 42.55 

There is considerable theoretical and experimental 
interest in the generation of optical pulses covering 
both picosecond and nanosecond time regimes. In 
particular, short time duration dye laser pulses have 
proven to be a powerful tool in time dependent 
spectroscopic applications. The time domain analysis 
o f steady state operating characteristics o f both actively 
and passively mode-locked pulses have been developed 
in recent years [1-5]. Feedback controlled self-excited 
optical pulses of nanosecond duration have been 
observed from a CW dye ring laser oscillating in a 
traveling mode [6]. This kind of pulse generation 
mechanism differs from the previous self-excitation of 
optical pulses [7, 8] in so far that an extra cavity 
element feeds back a fraction of one of the two traveling 
waves into the cavity and thereby triggers the self- 
excitation. This scheme of pulse generation is useful 
because of its simplicity, reliability, and independence 
from the pulse carrier frequency. 
The purpose of this paper is to present a time-domain 
description of this type of feedback controlled optical 
pulse generation. The theoretical model starts from the 
usual rate equation for two waves traveling in the 
opposite directions. It takes into account the periodic 
spatial modulation of the gain factor induced and 
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concomitant coupling of two waves, and finally the 
superposition of two waves due to the feedback ar- 
rangement. It is shown that the steady state pulse is a 
Gaussian pulse whose time duration is determined by 
the cavity round-trip time, the operating power level, 
and the relative phase at which these two pulses are 
phase locked. 

1. Experimental Observations 

A brief description of the experimental observations on 
traveling-wave oscillations in a CW dye ring laser [6] is 
presented. The ring-laser configuration, together with 
various quantities of interest considered in the theory 
are shown in Fig. 1. The laser consists of an Ar + laser 
pumped jet of rhodamine 6G of active length L, with 
L~cT, c, T, being the velocity of light and the cavity 
round trip time, respectively. The typical round trip 
time T ranges from 5 to 15ns. Let V+, V_ denote, 
respectively, the wave envelope traveling in the counter 
clockwise and clockwise direction. A fraction of the 
wave V_ is fed back into the cavity by means of mirror 
M I and is superposed to the wave V+. The laser can be 
wavelength tuned by the counter rotation of mirror M 2 
and M~, using the dispersive prisms P1 and P2" 
Attached to prism P1 is P*, which serves as an out- 
coupler of adjustable transmission. 
The characteristics of the self-excited optical pulses 
may be summarized as follows [6]: (i) typical pulse 
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Fig. 1. Feedback controlled mode-locking configu- 
ration. Mirror M 1 converts a fraction of V_ into V+ 

duration of a few ns can be generated reliably with the 
mirror M 1 well aligned and for laser bandwidth of a 
few A. (ii) The carrier frequency of the pulse can be 
tuned over the entire working range of rhodamine 6G. 
(iii) The intensity ratio, tV+12/IV_t 2 is always greater 
than 10, but IV] 2 never goes to zero. This ratio was 
monitored by the beam splitter (BS) inserted in the ring 
cavity. (iv) The pulsing behavior starts at the laser 
threshold and vanishes at extremely high optical 
pumping levels above threshold. In fact, the self-pulsing 
mode is more stable than CW mode. (v) The stability 
criteria as to the multiple pulses are similar to pico- 
second mode-locking behavior [2-5], for which at 
higher pumping levels and long cavities multiple pulses 
are more stable than a single pulse. The cavity round 
trip time is greater than the life time of the excited 
lasing level of rhodamine 6G(~  5 ns). 

2. Theory 

The laser field inside the ring cavity configuration 
consists of  two waves traveling in the opposite 
directions: 

E(z, t)= 21-[ V+ (z, t)e i~'+ + V_(z, t)e i~v- + c.c.], (1) 

~P ++ (z, t) = co o t-T- koz , (2) 

V+_(z,t)= ~ d(co-coo)E+_(co-coo,  Z)e i(~~176 . (3) 

Here, the carrier frequency coo is taken to be equal to the 
atomic transition frequency for simplicity (a non- 
essential approximation). The response of the medium 
caused by these waves can be obtained by using the 
usual rate equation approach [1, 9, 10]. Because the 
laser field consists of two counter-running waves, it 
induces the spatially modulated response in the gain 
medium. The modulation will then give rise to the 
energy exchange between the two pulses, while being 
amplified in the medium. 

The effective gain equation of the field components in 
the medium are given by (see Appendix A). 

~/~+ 
L ~ -  z = c(co)~+ - ~ 

a/~_ (4) 

L a~- - G(~o)~_ +~*#+,  

where the dispersive saturated gain and coupling per 
pass are 

G(co)=G0 (1 .  ,,. co -co0 ' -  1 (1 + ,2 -t- ,g_ / -1  ~(Iv+ 12>/ , 

(5a) 

= Go(V+ v_* ) lI~, (Sb) 

G O = �89162 h) (ko /na)L ,  (5c) 

I s = 3h2/l#l 2 T 1T 2 . (5d) 

Here, #, T1, n, Ne denote the dipole matrix element, the 
lifetime of the lasing level, the index of refraction of the 
medium, the population inversion with no applied field, 
respectively, and the linewidth is A c o = 2 / T  2. The 
angular bracket represents the time average over the 
pulse repetition period. L is the length of the gain 
medium. The above model for gain applies to (a) a 
homogeneously broadened system near threshold, (b) 
the pulse bandwidth much smaller than the atomic 
linewidth, and (c) the case where the time dependence, 
A N(t)  of the population inversion due to the laser field is 
to be neglected. Since the medium consists of a dye jet 
flowing perpendicular to the cavity axis, the Doppler 
broadening is not important. In addition, the time 
duration of the generated pulses is typically a few 
nanoseconds, whereas the atomic bandwidth is ~ 1 A. 
Finally AN( t )  becomes negligible when either T1 is 
much shorter than the pulse duration or the operating 
power level of the pulse is not high enough to cause 
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appreciable saturation during the pulse duration. 
Note that the coupling strength, z is determined by the 
steady power level of the two pulses. 
The exact solution of(4) can be found readily. However, 
by using a rather practical approximation, viz. the 
single pass gain is small for E+, E entering the medium 
at opposite ends, the respective output can be simplified 
as (Appendix B) 

[~:]out = [1 -[- G ( c o ) [  --X* i -~-a~co)] [~:]i  n . (6) 

The steady state characteristics of generated pulses can 
be described by the time domain analysis [1]. At the 
outset it is assumed that the two pulses are Gaussian 
having different amplitudes and phases. The input pulse 
propagating in the counter-clockwise direction, 

V(+t)(t) = 1E o exp ( -  7t2), (7a) 

~ (I) -- 1L~ ~ e x p [  - - ( (2 )  - -  COo)2/47] (7b) + --2~0 

is transformed after passing through the lasing medium 
as 

E(1 I) = ca(~  ~"/~?, (8a) 

V] ' ) ( t )= l  E o e g - ~ ( F / 7 ) i / 2 e x p [ - y ( t - 2 G / A c o )  2] (8b) 

with 

G = G o / [ I +  (]V+12-[-lr-'2)],is (8c) 

F =,/(1 + 16Gy/Aco2) -~ , (8d) 

1"= [/~(I_)[/[/~(DI. (8e) 

Here, the saturated, time averaged gain factor G(co) has 
been expanded in terms of(co - coo)/Aco up to the second 
order, and the effective single pass gain is regarded 
much less than unity. 
Next, the amplified pulse, V(+I~)(t) is linearly super- 
posed with a fraction of V(_I)(t) due to the feedback 
element, i.e. the mirror M 1. The resulting pulse envelope 
is then to be expressed as 

V~n)(t) = V~I)(t) ( l - Fre-i~O) 

-~ V(+II)(t) e x p [ -  Fre  iAe], (9) 

where F denotes the fraction of V~ ) fed back into the 
cavity with its phase reversed at the mirror M~ and 

~ = 4' + - ,;b _ (10) 

is the relative phase between two counter-running 
waves. The magnitude of the factor, Fr is taken much 
smaller than unity, as will be shown to be the case a 
posteriori. It is clear from (9) that the pulse under 
investigation experiences both amplitude and phase 
modulation per every cavity round trip time (T). The 
periodic nature of these modulations in time can be 

properly incorporated by regarding F as a time varying 
quantity, i.e. F = F o cos(t/T).  By assuming that the pulse 
duration is much shorter than T, one can expand 
cos(t /T)  with the initial time adjusted to maximize the 
modulation 

F(t)~_Fo{1 - 1 [ ( t -  2G/z~co)/r] 2} . (11) 

Upon inserting (11) into (9) there results 

Vii+re(t) = e-  2~ + ~[(~- 2 g/A ~)/r12 V4(ii)(t) , (12) 

where the complex depth of modulation is given by 

23 = Fore -iA4~ . (13) 

The round trip of the pulse is completed by including 
the cavity loss factor, cooT/Q+ and the time, Lc/c, L c 
being the cavity length. One may write 

V+(IV) (t'~ -- o -(~~ + )V (III)(t -- L c / C ) ,  (14) 

The self-consistency condition that the input pulse be 
same as the net output pulse except a possible, constant 
phase factor, 7 j can be written explicitly as 

e "2- i~=(l+16GT/Aco2)- l /2eA+e(-r+~/r2)e2 (15) 

with 

A+ = -cooT/Q+ + G - z r -  26. (16) 

Here, the effective cavity round trip time, T = L c / c  
+ 2G/Aco including the phase dispersion in the medium 
has been cancelled from both sides of (15). One can 
carry out a similar analysis for V (t), in which case the 
net amplitude factor (expA_) reads as 

A = - (030 T/Q _) + CJ - (z/r) .  (17) 

Equations (15)-(17) describe the operating characteris- 
tics of two pulses generated, and are similar in form to 
the equation derived previously by Kuizenga and 
Siegman in analyzing AM and F M  mode-locking of the 
homogeneous laser [1]. These equations, however, 
incorporate different physical processes, in that two 
waves are always present, amplified and coupled with 
each other simultaneously in the medium and ex- 
perience amplitude as well as phase modulation peri- 
odically in time induced by the feedback element. The 
pulse duration is determined from (15), (13), (Sd), by the 
relation, 

7 = [7/(1 + 16GT/AcoZ)] - ( 6 / T 2 ) ,  (18) 

and are dependent, among other factors, on the steady 
state power levels of two pulses (G) as well as the relative 
phase, A 0. The respective power level is in turn 
determined by requiring that the net gain including the 
cavity loss be unity, i.e. A+ =0 ;  

- (cooT/Q+)+ G -  z r -  23 =0 ,  (19a) 

- (co o T /Q _) + G - (z/r) = 0. (19 b) 
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Fig. 2. Pulse duration [ns] as a function of the scaled gain factor for 
four different relative phase values and for Am = 1 A, T=  10 ns 

Here the cavity loss factors for both waves are taken to 
be same for simplicity. 
In the absence of the feedback element ((S=0) it 
becomes clear from (18) and (19) that r =  1, 7 =0. This 
means that one recovers the CW operation of the ring 
laser. On the other hand, with a fraction of V fed back 
into the cavity, the ratio of amplitudes, r can be very 
different from 1. r can be found from (19) as 

' -  29oe ~ ~ ] J  ' 

with the quantities Go, F o scaled w.r.t, the cavity loss 
factor, 

go = Go/(~176 T /Q)  

fo = Fo/(eoo g /Q)  (21) 

and the time averaged power of V+ is scaled w.r.t. I S, 

e - - ( I V + [ 2 ) / I s .  (22) 

Near threshold regime where e ~ 1, r can be much less 
than unity, provided the relative phase between two 
pulses, A~b is not near the value n/2. The experimental 
evidence that r is small but remains fairly constant over 
a rather broad range of pumping power indicates that 
A~b may perhaps be dependent on the pumping power 
and goes to zero with increasing pumping level. In this 
analysis, A q5 is regarded as a parameter. Near threshold 
r can be simplified as 

r ~- 2 g o e / f  o cos A qS. (23) 

Upon inserting (23) into (19), one obtains the power 
level of the pulses, i.e. 

e~-(go- 1)/(go + 1). (24) 

Next, the pulse duration can be discussed explicitly 
by inserting (23) and (24) into (18). ~ is in general a 

complex quantity : the real part (y') determines the time 
duration, while the imaginary part (7") gives rise to the 
constant phase shift, ~ in (15). For the practical 
situation where Aoo T>> 1, (Am ~ 1 ~ ,  T ~  l0 ns) one finds 
for IA~bl < n / 2  

~),. _ 1 - ( ~ )  ( g ( l - [ - g '  ~1 /2  
asmlA0[,  . ~ /  . (25) 

Equation (25) gives the pulse width, zp=2 1/y' in terms 
of the net cavity round trip time T, the bandwidth Am, 
the relative phase A0, and the scaled gain factor g0 or 
equivalently the operating power level e of the pulse 
itself. In Fig. 2, zp is plotted as a function of gain factor 
for four different values of Aq5 with Am = 1 ~, T= 10 ns, 
corresponding to a typical experimental situation. As 
can be noted clearly from Fig. 2, these theoretical values 
o f zp can explain the typical observed values o f the pulse 
duration. The dependence of z v on go and Aq5 is most 
pronounced near threshold regime. The experimental 
observation that Zp is essentially constant over a broad 
range of 9o provides an additional evidence that A0 
may perhaps be dependent on go, viz. e. Inversely, 
assuming z v independent of go, one can infer the go- 
dependence of A~b from (25). It appears that the 
rigorous discussion of A 0 is a formidable, yet interest- 
ing problem. 

ConduNon 

In conclusion, this paper presents a time domain 
analysis of feedback controlled pulse generation in 
traveling ring-laser configuration. It has been shown 
that a Gaussian pulse, whose time duration determined 
from the self-consistency condition in terms of various 
system characteristics can explain realistically the ob- 
served pulses, in particular the time duration. It has also 
been pointed out that the role of the feedback element is 
to be modeled essentially as an amplitude modulator. 
A further analysis is under way involving the stability 
criteria of the pulses and a detailed discussion of the 
relative phase, at which value the two pulses are 
self-phase locked. 

Appendix A 

Gain and Coupling of two Counter-Running Waves in a Homogeneous 
Medium 

In this appendix, the effective gain and coupling of two waves 
traveling in an opposite direction in a homogeneous medium is 
discussed. The rate equation reads as 

+ - - - -  +cog P= 2m~ (A.1) 
3t T 2 at 3h 

O N - N e 2 aP 
- - N +  - = E - - - ,  (A.2) 
at T 1 hco o & 
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where N , P  denote, respectively, the population inversion and the 
macroscopic polarization and 2/Tz=Aco is the resultant linewidth 
including the effects of  prisms used. In the two limits where the pulse 
durat ion is much shorter than T~ or the steady state power level not 
high enough to cause appreciable saturation during the pulse 
duration, the first term on the left of (A.2) can be neglected thus, one 
can rewrite (A.2) as 

2T~ 1 ~V 
N = N "  + ~ o  T f  dtE'--'et (A.3) 

where Tis the pulse repetition or round trip time. By regarding N time 
independent, one finds the susceptibility associated with/~ + (co)/~ (co) 
as 
X • = 2co~ N 1 (A.4) 

3h% (co~ - co2) +iAcoco ' 

Upon inserting (A.4) into (A.3), and making use of the fact that the 
pulse bandwidth is much smaller than Aco, i.e. (co o -co)/Aco ~ 1, one 
finds the expression of the saturated population inversion as 

N = N ~  1 + --  ([V+12 +[V_I 2 

- 2 ikoz ) +V+V~e + V * V  e 2~ko') (A.5) 
/ 

with I~ given in the text and angular bracket denoting the time 
average. Because of the presence of two counter-running waves, N is 
spatially modulated. The resulting response of the medium can thus 
be obtained from (A.4) and (A.5). 
Near the threshold pumping power, where (IV+_[2)/I~ 1, one may 
write 
):(co) = i)~d.~.(co ) -  i(z,~ e 2ik~ + c.c.) (A.6) 

with 

)~d.~.(co) = ~o/(1 + 2i ~--m~ (1 + I ~ ([V+[ +[V_12)), (a.7) 

z,, = Zo(< v+* v_ )/x0, (A.8) 

X0 = 1#[2 N ~T2/3h % . (A.9) 

Finally, by substituting (A.6)-(A.9) into the wave equation, 

[ ~2 n~2 02 ] 6~2 

with the identity, P(co)=%)~(co)/](co) and singling out the respective 
components, one can obtain (5) in the text. 

A p p e n d i x  B 

Amplification of Two Coupled Waves 

In this appendix, the amplification and concomitant coupling of two 
waves E+, /~ in the medium are discussed. Introducing the 
dimensionless distance ~ = z/L, one may rewrite (4) in the text as 

~ E +  = a ( c o ) ~ + - ~  , (B.1) 

~ E _  = - G(co)/~_ + x ' E + .  (B-Z) 
og 

The solution of this equation can be found in the form 

/~+ =aleY~r , (B.3) 

/~ = b I e ~'~ + b 2 e ~ . (B.4) 

Upon inserting (B.3), (B.4) into (B.1), (B.2), there results 

? iai = G(a ) )a  i - g b i  , (B.5) 

Ylbi = - G(co) b i + ~* a i (B.6) 

with i=  1,2. From the secular equation associated with (B.5), (B.6), 
one finds 

72,2 = • [G(co) 2 - [x l  2] 1/2. (B.7) 

Next, the constants, a~ and b~ are to be found from (B.6) and the 
boundary condition ; 

/~+n) = al  e -  1/271 ~- a 2 e l / 2 ~ ,  (B.8) 

~ 9~* X'* E(_ in~=a - - e  1/2r~ a-a - - e -  1/2rl (B.9) 
1 G(co)+71 - 2 G(co)_71 

After finding ap  a 2 and inserting the expressions into (B.3), (B.4), the 
two output waves are given in terms of inputs as 

E_]o, t [ - M 2 1  M22] 

with 

M~I =M22 =Yl/[Yl eoshy~ - G(co) s inhyl l  , (B.I 1) 

M12 = M *  1 = z  sinhyl/[y I cosh71 - G(co) sinh Yl]. (B.12) 

In the limit where the single pass gain and coupling are small, the 
matrix elements reduce to the expressions given in the text. 

References  

1. D.J.Kuizenga, A.E.Siegman: IEEE J. QE-6, 694 (1970) 
2. H.A.Haus:  J. Appl. Phys. 46, 3049 (1975) 
3. H.A.Haus:  IEEE J. QE-11, 736 (1975) 
4. H.A.Haus:  IEEE J. QE-12, 169 (1976) 
5. S.L.Shapiro (Ed.): Ultrashort Light Pulses, Top. Appl. Phys., 

Vol. 18 (Springer, Berlin, Heidelberg, New York 1977) 
6. G.Marowsky, R.Cubeddu:  J. Appl. Phys. 47, 5470 (1976) 
7. P.W.Smith:  IEEE J. QE-3, 627 (1967) 
8. C.L.Tang, M.Statz, G.DeMars :  J. Appl. Phys. 34, 2289 (1963) 
9. A.Iesevgi, W.E.Lamb, Jr . :Phys.  Rev. 185, 517 (1969) 

10. M.Sargent, III.: Appl. Phys. 9, 127 (1976) 


