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Excitation transfer processes have been studied in electron-beam pumped binary Ar-POPOP and ternary Ar-N 2-  
POPOP mixtures. Fluorescence measurements have shown that the major POPOP dye vapor excitation source is the ionic 
species Ar~. A previously unreported quenching reaction by N 2 in the Ar-N 2 system has been discovered. 

1. Introduction 

Since the first observation of  electron-beam ex- 
cited superradiant emission from the organic dye 
POPOP in the vapor phase buffered by high-pressure 
pure argon [1 ] ,  there has been considerable interest 
in developing this system into an efficient and power- 
ful UV-visible tunable laser [2,3]. In order to es- 
tablish optimum electron-beam excitation conditions 
for the organic dye vapor-buffer  gas mixture, an 
understanding of  possible energy-transfer processes 
is necessary. In the present work the energy-transfer 
processes of  Ar-POPOP have been studied and com- 
pared to the well-known formation kinetics scheme 
of  A r - N  2 [4,5]. The species responsible for chan- 
neling electron-beam energy into the upper singlet 
levels of  POPOP has been identified, and a number 
of pertinent reaction rate constants for various 
energy-transfer processes have been estimated. In ad- 
dition, a hitherto unreported quenching mechanism 
in the A r - N  2 system has been identified. 

2. Experimental 

The apparatus and procedures used in these experi- 
ments are essentially the same as those described in 
ref. [6].  Transverse electron-beam excitation of  the 
gas mixture is obtained with an electron-beam pulse 
of 1 MeV electrons with a total input energy of  100 J. 
This energy is coupled into a high-pressure, high-tem- 
perature reaction cell through a 0.002 inch thick 
titanium window of  10 cm 2 cross-sectional area. The 
beam-current density behind the foil is 0.7 kA/cm 2. 
Faraday cup measurements show that the temporal 
behavior of  the beam current can be well represented 
by the equation I = 10 t exp ( - t / r ) ,  with r ~, 5 ns. The 
fluorescence behavior is monitored using either a 
vacuum photodiode-transient digitizer combination 
or a grating monochromator to obtain wavelength- 
integrated POPOP and N 2 fluorescence characteris- 
tics. The overall time resolution is better than 1 ns. 
All experiments using mixtures containing POPOP 
are performed at 300°C. Such high temperatures are 
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necessary in order to produce a sufficiently high 
POPOP vapor pressure. 

3. Energy transfer in Ar-N 2 mixtures 

Tire energy transfer scheme for the excitation of 
N2(C 3IIu) in Ar -N  2 mixtures has been discussed 
in detail by Lorents [7]. All of the experiments re- 
ported in this paper were performed using mixtures 
containing 99% Ar and less than 1% N2, at total pres- 
sures of 1 to 5 atm. Fluorescence was monitored for 
only 120 ns following electron beam initiation. Un- 
der these conditions, the major mechanism leading 
to excitation of N2(C 3flu) is: 

Ar + ef ~ Ar + + ef+ es, 

Ar + + Ar + Ar ~ Ar~ + Ar, 

k 2 = 2 . 5 X  10 - 3 1 c m  6s  -1 [4]; 

+ 

Ar 2 + e s -~ Ar + Ar*, 

k 3 = 3.5Te-0"67 X 10 -5 s -1 [4] ; 

(1) 

(2) 

(3) 

Ar~ + Ar + Ar ~ Ar~ + Ar, (4) 

k 4 ~ 1 0  -31 cm 6 s -1 [8]; 

Ar* + N 2 ~ Ar + N2(C 3Ilu) , (5) 

k 5 = 3 X  10 -11 cm 3 s -1 [4]; 

Ar* + hr + Ar ~ Ar~ + Ar, (6) 

k 6 = 10 -32 cm 6 s -1 [4] ; 

N2(C 3IIu) + Ar ~ N2(B 3IIg) + Ar, (7) 

k 7 = 5 X  10 - 1 3 c m  3s  -1 [4]; 

N2(C 3I] u) -~ N2(B 3IIg) + hp, 

k 8 = 2.5 X 107 s - I  [4]. 

(8) 

In this mechanism the symbol ef is used to represent 
electrons with energies of approximately 1 MeV. 
These electrons lose a small fraction of their energy 
in collisions [9], to form argon ions, secondary elec- 
trons (es), with an average energy of ~ 6.9 eV [7], 

and excited argon atoms [10]. The initial ion and 
secondary electron density is roughly a linear func- 
tion of the argon pressure. Approximately 20% of 
the excitation is funneled directly into excited states 
of neutral argon [7]. 

The initial product of reaction (3) is probably the 
highly energetic state, Ar(3p54p) [7]. This state is 
rapidly quenched by argon atoms and electrons to 
Ar(3p54s). Four states have this electron configura- 
tion: two metastables, 3P 2 and 3P0, which are de- 
signated Ar* in the above mechanism, the resonance 
state 1P1, and the short-lived 3P 1 state. 

Kinetic modeling of the temporal behavior of 
Ar -N  2 mixtures containing a fixed constant pressure 
of 0.076 Torr N 2 and various pressures of argon was 
performed using the above mechanism, and excellent 
agreement with experiment is obtained when litera- 
ture rate constants are used [4], and when Ar* is as- 
sumed to be formed instantly by the electron beam. 
This latter assumption allows the model to be solved 
analytically to yield: 

[N2(C 3IIu) ] = [ck5(N2) ( A r ) / ( b - a ) ]  (e -a t  - e - b t ) ,  

where a = k5(N2) + k6(Ar)2, b = k7(Ar ) + ks,  and c 
is a constant. The level of agreement between experi- 
ment and the predictions of the model is illustrated 
in fig. 1. As can be seen, N 2 fluorescence is most in- 
tense for the mixture containing 2 atm argon. 

Some understanding of the various factors that af- 
fect the fluorescence pulse shape was obtained as a 
result of the modeling study. The approach of the 
N 2 fluorescence to its maximum value depends prin- 
cipally on the rate of the reactions removing 
N2(C 3IIu). In contrast, the fluorescence decay is 
most strongly affected by the rate of removal of the 
atomic argon metastables Ar*(3p 5 4s 1). The fluores- 
cence peak maximizes at an argon pressure of approx- 
imately 2 atm, because at this pressure a rough bal- 
ance is reached between the formation of Ar*, a pro- 
cess that is linear in argon concentration, and its re- 
moval by reaction (6), the rate of which depends on 
the square of the argon concentration. 

A number of experiments were performdd at con- 
stant argon pressure, in which the N 2 partial pressure 
was varied from 1 to 15 Torr. Over this range the 
peak fluorescent intensity, extracted from intensity/ 
time curves, is predicted by the above mechanism to 
be proportional to the partial pressure of N 2. However, 
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Fig. 1. The intensity of N 2 fluorescence [C(3IIu)-B(3FIg) ] 
as a function of time for a number of Ar-N 2 mixtures con- 
raining a fixed pressure of nitrogen (0.8 Torr) and various 
pressures of argon. The upper curves (a) are measured; the 
lower curves (b) are calculated from the model described in 
the text. 
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Fig. 2. The maximum intensity of N 2 fluorescence (taken 
from intensity-time curves) plotted as a function of N2 par- 
tial pressure for two fixed argon pressures (1 and 3 atm). The 
solid lines are drawn through experimental measurements. 
The dashed lines represent predictions of the model set forth 
in the text. 

the actual variation of  the intensity with N 2 partial 
pressure was not as predicted, but  was found to be 
as shown in fig. 2. At  N 2 pressures in excess of 1.5 

Torr, the fluorescence ceased to be linear in N2, bu t  
instead asymptotically approached a maximum val- 
ue. Fur ther  experiments showed that the peak inten- 
sity changed little as the nitrogen partial pressure 
was increased from 15 to 150 Torr. This behavior 
can be explained most easily by  assuming that a pre- 
cursor of  Ar* is quenched by N 2. Further  support 
for such a quenching mechanism was obtained from 
the study of  A r - N  2 -POPOP ternary mixtures de- 
scribed in section 5. 

4. Studies of  Ar -POPOP mixtures 

Total  fluorescence was monitored as a function of  
reaction time for several mixtures containing 1 Torr 
POPOP and varying pressures of  argon, ranging from 
1 to 5 atm. The shape of  the fluorescence pulse was 
found to be identical for all mixtures studied. The 
pulse rose to a maximum value at approximately 6 ns, 
and then decayed in an exponential  fashion. Its half- 
width was measured as 1 1 - 1 2  ns. The peak fluores- 
cence intensity varied from mixture to mixture as 
the argon pressure was changed, rising to a maximum 
value for mixtures containing 4 atm, then decreasing 
by 10% as the pressure was further raised to 5 atm. 

Since the spontaneous decay time o f  POPOP 
(r ~ 1 ns) [2] is much shorter than the pulse width 
of  the observed fluorescence, the pulse shape must 
mirror that  of  the precursor species that  transfers 
energy to POPOP. Now POPOP fluorescence occurs 
on a timescale that is much shorter than that of  the 
N 2 fluorescence described in section 3. In fact, its 
pulse shape is very similar to that  of  the e-beam ex- 
citation pulse. Thus the metastable neutrals, 
Ar*(3p54s 3P2,0) and Ar~, cannot possibly be exci- 
tation sources for POPOP since these metastables 
have lifetimes of  as much as 5 0 - 1 0 0  ns in mixtures 
containing 1 - 2  atm argon. 

Other possible excitation sources o f  POPOP can 
be divided into two classes: (a) the charged species, 
among which are Ar ÷, Ar~ and hot  secondary elec- 
trons, and (b) the short-lived neutrals. In this lat ter  
class are the highly energetic atoms, Ar(3p54p),  and 
the argon resonance state, Ar(3p 54s 1 ]P1)" A distinc- 
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tion between the two classes of excitation source was 
made by adding small amounts of SF 6 (0.6 Torr) to 
mixtures containing 1 Tort POPOP and 2 atm argon. 
SF 6 is known to be a very efficient scavenger of ther- 
mal electrons [ 11 ]. Therefore, its presence retards 
the progress of the dissociative recombination reac- 
tion, Ar~ + e ~ Ar* + Ar, which is the major source 
of excited neutrals under the conditions of the ex- 
periments reported in this paper. This effect of SF 6 
has been demonstrated previously by LeCalv6 and 
Bourene [12] who have shown that the intensity of 
fluorescence from N2(C 3IIu) in e-beam excited 
Ar-N 2 mixtures is significantly reduced by the addi- 
tion of 0.01% SF 6. 

In our experiments the addition of 0.6 Torr SF 6 
to Ar-POPOP mixtures increased the peak intensity 
of POPOP fluorescence by 20-30%. In addition, the 
fluorescence pulse width was slightly lengthened. By 
comparison, the addition of a similar amount of SF 6 
to a mixture containing 1 Torr N 2 and 2 atm argon, 
at 300°C, decreased the N2(C 3Hu) fluorescence to 
one-third of its original value. These experiments 
conclusively show that POPOP is not excited by the 
short-lived neutrals formed as a result of dissociative 
recombination, but instead is excited by one of the 
electrically charged species. 

The slight enhancement of POPOP fluorescence 
in the presence of SF 6 suggests that the most likely 

+ 
excitation source is Ar 2. In the presence of SF6, 
three-body ion-ion recombination with SF 6 will re- 
place reaction (3) as the major loss mechanism for 
Ar~. The rate of this reaction has not been measured, 
but a rough estimate of it can be made, based on a 
recent'calculation for the reaction, Ar~ + F' + Ar 
Ar2F* + Ar. At room temperature the rate of this 
latter reaction has been determined as (1-3)  X 10 -6 
cm 3 s -1 [13]. Since the appropriate theory predicts 
that the rate of three-body ion-ion recombination 
should have a temperature dependence on the order 
of T -5/2 to T -7/2, and should decrease with increas- 
ing mass of the ionic collision partners [ 14], the rate 
constant for the reaction with SF~, at 300°C, can be 
estimated as (1 -3)  × 10 -7 cm 3 s -1. Therefore, the 
rate of this reaction is probably somewhat slower 
than the rate of the reaction of Ar~ with those "ther- 
mal" electrons that are captured by SF 6. If this is 
true, then the concentration of Ar~ would be in- 
creased by the addition of SF 6. It is difficult to 

imagine how the concentration of Ar + or of hot sec- 
ondary electrons could be anything but decreased in 
the presence of SF 6. 

The hypothesis that POPOP is excited by Ar~ is 
supported by the observation that POPOP fluores- 
cence maximizes in mixtures containing 4 atm argon. 
Computation performed using the mechanism and 
rate constants given in section 3 showed that the 
peak concentration of Ar~ maximizes in mixtures 
containing 4 atm argon if the initial concentration 
of secondary electrons is taken to be 2.5 X 1015 (At) 
cm -3 atm -1 , and the electron temperature is such 
that k 3 ~ 10 -7 s -1. Both are reasonable values for 
this type of e-beam experiment. By contrast, the peak 
concentration of Ar + steadily decreased from mix- 
ture to mixture as the total argon pressure increased 
from 1 to 5 arm. Unfortunately, the behavior of the 
hot secondary electrons is somewhat uncertain, since 
the reaction of such electrons with Ar~ has not been 
studied, and the precise influence of argon on the 
electron temperature is unknown. 

From the above discussion, it is clear that POPOP 
is not excited by Ar +, short-lived argon neutrals, Ar* 
or Ar~. Its most likely excitation source is Ar~, al- 
though excitation by hot secondary electrons cannot 
be entirely ruled out. 

5. Ternary Ar-N 2-POPOP mixtures 

The fluorescence observed when a mixture con- 
taining 1 Torr POPOP, 0,5 Torr N 2 and 4 atm argon 
was excited by the electron beam, is shown in fig. 3. 
Two time-resolved peaks were identified. Independent 
spectral measurements showed that these were sep- 
arately produced by the two minority components: 
The first peak was produced by POPOP, the second 
by N 2. Since the POPOP fluorescence occurred be- 
fore that from N2, optical excitation of POPOP via 
radiative pumping by N 2 could not have taken place. 

In ternary mixtures the dependence of the N 2 
fluorescence on the partial pressures of N 2 and Ar 
was found to be identical to that observed, at 300°C, 
for binary Ar-N 2 mixtures $. However, the addition 

~: At 300°C, the N 2 fluorescence pulse width was somewhat 
larger than that observed at room temperature. The reason 
for this change is that the third-order rate constant k 6 de- 
creases as the temperature is raised. 
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Fig. 3. Temporal fluorescence characteristics of an Ar-N 2 -  
POPOP mixture. 

of  1 Torr POPOP reduced the overall intensity of  
N 2 fluorescence by a factor of  two. POPOP fluores- 
cence behaved in a complementary manner. Its pulse 
shape and the dependence of  its intensity on argon 
pressure were unaltered by  the presence of  N2, but 
its overall intensity was decreased by a factor of  two 
when 1 - 3  Torr of  N 2 was added to Ar -POPOP mix- 
tures. 

These observations can be readily interpreted if  
N 2 reduces the intensity of  POPOP fluorescence by 
reacting with either its excitation source Ar~, or with 
a precursor of  it, to produce a species that does not 
transfer energy to the dye. Since only 1 - 3  Torr of  
N 2 are required to significantly reduce POPOP fluores- 
cence, the quenching reaction must have a rate con- 
stant of  ( 1 - 3 )  × 10 - 9  cm -3 .  It should be noted 
that a quenching reaction of  this speed would ac- 
count quantitatively for the saturation behavior dis- 
played in fig. 2. Therefore, the observation that  N 2 
quenches POPOP fluorescence, reinforces the finding 
that N 2 reacts with a precursor of  Ar* in A r - N  2 mix- 
tures. 

Significant quenching cannot occur as a result of  
the reaction of  N 2 with Ar + since this reaction is 
known to be very slow [15]. It possibly occurs as 
a result of  the reaction, Ar~ + N 2 ~ ArN~ + Ar. The 
ion ArN~ has been observed previously in A r - N  2 
systems [ 16]. In such systems its appearance poten- 
tial has been shown to be identical to that  of  Ar~, 
and its concentration, relative to that of  Ar~, has been 
shown to be linearly dependent on the partial pres- 

sure of  N 2 [16]. In addition, Ar~ is known to react 
rapidly with many molecules. Rate constants of  

10 - 9  cm 3 s -1 have been measured for reactions 

with CO 2 [17] and with H20  [18]. 
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