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Abstract

High density storage of data in photosensitive electrooptic crystals has been achieved. One of the

crystals with the highest writing sensitivity is LiNb03 doped with iron. A key factor in its high
sensitivity involves the nature of the charge transport in the crystal. A series of measurements has
been carried out to study the charge transport by photocurrent measurements and electrooptic measurements.
The two techniques are shown to give consistent results. When described in terms of an equivalent internal

electric field a dependence on light intensity is required.

Introduction

The relative advantages of optical memory systems compared to otheVlgxisting and emerging systems
based on other technologies have been enumerated in a previous paper. In the present paper the basic
principles of operation of optical memories based on the photorefractive effect will be reviewed.

Because the writing efficiency of a photorefractive crystal depends critically on the rate at which
photoexcited electrons can be removed from the donor sites from which they are excited, the electron

tLfans-port process constitutes an important part of optical data storage and display. A number of theoriest
have been set forth to explain the transport process, but there are still some unsettled issues that need
discussion and further investigation. In the second portion of this paper a brief review of the electron
excitation and transport process in photorefractive crystals will be given.

In the third section of the paper some of our recent experimental results will be given along with a
discussion of how these results bear on current theories.

Photorefractive Memory Systems

The basic property of a photorefractive crystal that allows it to be used in a holographic memory system
is that its index of refraction changes in the presence of optical illumination. The change in index is
attributed to the linear electrooptic effect. The electric field that must be present to produce the
observed change in refractive index results from static charge accumulation due to transport of the photo -
excited carriers.

A typical memory system using the photorefractive effect is shown schematically in Figure 1. The basic
technique involves storing information in a page format in the form of a phase hologram in the ferroelectric
crystal. Readout is achieved by shining only the reference beam at the same angle used as in writing.
The detector array at the output then converts the memory signal from optical to electrical form. An
intense reference beam can be used for the erasure process. It is obvious that the less light that it takes
to perform the processes of writing, reading, and erasing,the more efficient and faster the system is.
The following two sections report on a study of the electron transport process and how it affects the
writing and erasure processes.

Theory

If light of sufficient frequency interacts with donor sites within a crystal it will have a certain
probability of photoexciting electrons into the conduction band. The rate of excitation of the donor sites
is as follows:

la

g=hv

where I = Intensity of the light,
a = Attenuation coefficient of the crystal,
h = Planck's constant,
v = Frequency of light.

The continuity equation for the conduction band electronic concentration n is given by

do =g(x) - T +é
dt

v.j

where T = Electron trapping time,

j = Current density,
e = Electronic charge magnitude.

(1)

(2)
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d7

where T = Electron trapping time,
j = Current density,
e = Electronic charge magnitude.
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The current density of the electrons can be divided into drift and diffusion currents.

= eµn(x) + eD Vn

where µ = Electron mobility
D = Diffusion constant
E = Electric field

(3)

The first term represents drift current and the second term diffusion current. Under most circumstances
diffusion currents in LiNb03 can be neglected as far as the photorefractive effect is concerned, however,
there is general agreement as to how to calculate the diffusion current term if it is significant. With
regard to the drift current term in order to reconcile experiment with theory a constant internal electric
field is assumed.(2) Glass has suggested that the photoexcited carriers have a preferred average velocity
upon excitation.(5) Under circumstances where the trapping time is short and the dark conductivity small,
the results of the two theories are equivalent and the purpose of this paper is not to choose between the
two theories. If an equivalent internal field, Eint, is included then the drift current becomes

drift =
eµn(x) [Eint + E(x)]

where E(x) includes all real electric fields.
This work reported on here is an investigation by many different techniques of the dependence of

E. on the light intensity I .
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Fig. 1. Experimental arrangement for a holographic
read -write memory.

Holographic Experiments

(4)

Fig. 2. Schematic for recording volume
holograms with plane waves.

Experimental Results of Eint Measurements

BEAMSPLITTER

Using the experimental configuration of Figure 2, holograms were written with plane waves. When the two
waves of intensity I and wavelength k are incident on the crystal at an angle 20, interference effects
result in an intensity 1(x) given by

1(x) = 10 (1 + cos Kx) (5)

2rr

where K = is the grating vector and A
i

is the grating wavelength. Typical fringe

spacings are of the order of 1 to 10 µm. The resultant photogeneration and space charge configuration
are shown in Figure 3

For a thick, sinusoidal grating phase hologram Kogelnik(9) has derived the following expression for
the diffraction efficiency

diffracted
sin2

id An

10 Xcos0
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where An = Change in index of refraction

d = Grating thickness

Observations of 11 as a function of time for various writing intensities are shown in Figure 4. These

measurements allow one to infer the value of internal equivalent field which must exist for these different

intensities in order to have the observed charge transport. This field has a linear dependence on intensity.
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Fig. 4. Diffraction efficiency as a
function of time for various
writing intensities. The two
upper curves are experimental
results, the lower is based on
calculations.

Because the change in index of refraction is a good measure of the electric field producing it, we
carried out some experiments to monitor the change in index as a hologram was written. We used a
Mach -Zehnder interferometer in one arm of which was placed an .05% iron doped lithium niobate crystal. An

input beam at 4880 A from an argon ion laser was split into two beams and a hologram was recorded inside
the crystal with writing angle of approximately 12 °. Simultaneously a weak HeNe laser beam was used to
measure the ensuing change in the index of refraction An, of the crystal by measuring the fringe shift as
a function of writing time for two different beam intensities. An can then be attributed to the space
charge field and this is equal to the equivalent internal field when steady state is achieved if the dark

conductivity is sufficiently low. In Figure 5 is presented the electron drift field E thus measured
as a function of writing time for two different intensities. Clearly E is enhanced rather significantly

with increasing writing intensity.

Photoconductive Experiments

Glass et.al.(10) have reported that the bias external field necessary to reduce,the photocurrent to
zero was greatly dependent on the input intensity. For example, in2Fe:LiNb03 with a = 38 cm , the

photocurrent was zero 'or an external field of 60 kV /cm at .32w /cm input intensity and decreasing to
38 kV /cm for 0.08 w /cm .

We have carried out a similar experiment but measured the photocurrent produced through a short circuit
when the crystal is illuminated with various light intensities. The results are shown in Figure 6.
The two straight lines are for a least square fit to the first four points and a least square fit to all
points. This indicates that a significantly higher field is produced at higher intensities.
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Conclusions

Through a series of measurements of photocurrents, indices of refraction and holographic writing
efficiency, it has been determined that a quantity describable by an equivalent internal field has a
dependence on the intensity of the incident light, becoming larger with greater light intensity. These
results are also consistent with Glass's finding that short high intensity pulses were more efficient for
writing holograms. From a practical point of view these results are important for improving hologram
writing efficiency. From a theoretical point of view they indicate that further mechanisms must be
considered for explaining the photorefractive effect and the bulk photovoltaic effect.
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