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Abstract-Plasmas from a pulsed jet discharge have been character- 
ized with respect to gas species and nozzle design. Spectral lines from 
the gas used in the pulsed nozzle are apparent in the visible region. 
The vacuum ultraviolet spectrum, in particular for heavier gases, is 
dominated by emission from species sputtered from the nozzle. The 
production of highly ionized and excited states from materials created 
by the sputtering of the nozzle has possible applications in VUV spec- 
troscopy. By operating the pulsed jet discharge at a 50 Hz repetition 
rate with NF, to produce excited fluorine ions, etch rates in excess of 
10 pm/min have been achieved in silicon which may have applications 
to micromechanics. 

I .  INTRODUCTION 
ECENTLY, a high-voltage high-current discharge through R a pulsed, supersonically-expanding gas has been reported 

as a potential VUV laser excitation mechanism [ 1 3 .  These dis- 
charges are designed with an electrode immediately behind the 
orifice of a pulsed jet with a grounded wire mesh located about 
1.5 cm below the nozzle orifice. Such an arrangement achieves 
high peak currents ( - 2  KA)  and a very high current density 
( - 1 MA/cm2) since the discharge is confined to the small area 
of the nozzle orifice. This approach differs from other recent 
work [2]-[7] in that the discharge duration is short ( - 100 ns),  
and currents in excess of 1 KA are employed. 

Although the initial design and operation of these discharges 
with Ar was outlined in [l] ,  the characterization of such a de- 
vice with respect to nozzle design, gas parameters, and dis- 
charge current needed further study. In this work the visible, 
ultraviolet, and vacuum ultraviolet (VUV) emission spectra re- 
sulting from the excitation of the gas in the pulsed nozzle as 
well as from the sputtered material from the nozzle itself are 
investigated. 

In addition to these spectroscopic studies, fluorine compo- 
nent gases such as NF, have been used in the discharge in order 
to etch silicon. The results may have applications to microme- 
chanics, where high etch rates are necessary to produce rela- 
tively large but deep feature sizes ( - 10-100 pm)  in contrast 
with microelectronics, where small feature sizes ( 5 1 p m )  are 
required at relatively shallow depths. 
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11. DESCRIPTION OF DISCHARGE APPARATUS 
A schematic of the pulsed jet discharge system is shown in 

Fig. 1 .  A pulsed valve (General Valve) is located on the top of 
the nozzle assembly and sends a short ( = 1 ms)  pulse of gas 
through the orifice of the nozzle into the vacuum chamber. 
While the gas expands through the nozzle, a discharge through 
the nozzle towards the grounded grid is initiated. The back 
pressure on the valve is maintained at about 3 atm. The gases 
studied included He, N,, Ne, Ar, Kr, Xe, NF,, and SF,. A 
turbo pump backed by a rotary vane roughing pump restores the 
background pressure in the cell to a few times lo-’ torr between 
pulses when the discharge is operated at low repetition rates ( 1- 
2 Hz). The tungsten electrode is situated about 1.5 mm above 
the nozzle orifice, and a stainless steel wire mesh located 1.5 
cm below the orifice serves as the ground plane. 

The high-voltage discharge circuit is shown in Fig. 2. The 
maximum voltage from the power supply is 20 KV. The capac- 
itance of the charging capacitor ( C1) is 5.5 nF, and that of the 
peaking capacitor ( C 2 )  is 4 .2  nF. With a thyratron (EG&G, 
model HY-3202) serving as the high-voltage switch, the current 
pulse, measured by a commercial current transformer, has a 
FWHM of about 100 ns, with some ringing out to about 1 ps. 
At 15 KV charging voltage, the peak current is 1.8 KA. For a 
500 pm diameter orifice, this peak current corresponds to an 
average current density of 0.9 MA/cm* inside the orifice. The 
trigger output of the pulsed valve is used as the master clock, 
but a trigger delay of about 1 ms for the thyratron is required 
for a stable discharge; i.e., the discharge is initiated about 1 ms 
after the beginning of the jet expansion. 

Fig. 3 shows typical voltage and current waveforms. Because 
of the finite inductance of the electrode, the voltage peaks ap- 
proximately 80 ns before the current. Assuming the value of the 
peaking capacitor (4.2 n F )  is fixed, the ringing period of the 
current indicates that the inductance of the discharge is about 
290 nH. The decay of the current ringing reveals that the resis- 
tance of the discharge reaches a value of approximately 3-4 R .  
Integration of the power calculated using these waveforms gives 
an estimate of the energy delivered to the discharge of about 
200 mJ during the initial current pulse. The small bump in the 
decay of the initial current pulse (a t  - 250 ns in Fig. 3 ) is ap- 
parently due to a surge of current from the outer circuit loop, 
which includes the storage capacitor of the thyratron. 

At higher charging voltages, there seems to be significant en- 
ergy dissipated during the ringing period of the discharge. From 
the current voltage waveforms, it can be seen that there is a 
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Fig. 1. Schematic of the pulsed jet discharge and the VUV detection ap- 
paratus. 
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Fig. 2.  Schematic of the high-voltage circuit. 
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Fig. 3.  Discharge voltage and current waveforms. 

secondary peak of energy dissipation approximately 200 ns after 
the initial peak, with additional peaks occuring with a period of 
roughly 100 ns. This feature can also be seen in the temporal 
behavior of the fluorescence. Fig. 4 shows traces of the tem- 
poral response of the 207 nm emission from Si 11, which is very 
bright in spectra taken with a Macor or glass nozzle using heavy 
gases in the pulsed jet. At a discharge voltage of 15 KV [Fig. 
4(a)], the signal decays after about 100 ns, corresponding to the 
decay of the initial peak of the discharge current. At 20 KV 
[Fig. 4(b)], however, the intensity becomes very broad in time 
and shows a pronounced periodic structure in its decay. When 
the transit time of the photomultiplier ( -30 ns) is taken into 
account, the second fluorescence peak is delayed about 200 ns 
from the initial peak of the discharge, and the period of later 
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Fig. 4. Traces of the temporal behavior of the intensity of the 207 nm 

emission of Si I1 at (a) 15 KV and (b) 20 KV. 

fluorescence peaks at about 80-100 ns, which is in good agree- 
ment with the analysis of the voltage and current waveforms. 

The nozzle assembly is designed so that the nozzle is inter- 
changeable, and therefore, a variety of orifice diameters and 
nozzle materials can be studied. Discharge operation with noz- 
zle orifices ranging from 250 to 500 pm in diameter has been 
characterized. Materials used for the nozzles include Macor, (a 
machinable ceramic), sapphire, glass, carbon, Delrin, and PVC. 
The nozzles are designed to give a supersonic expansion and to 
optimize the production and cooling of molecular radicals and 
ions [5]. All of the nozzles made from machinable materials and 
the sapphire nozzles have a 45" half angle above the nozzle 
orifice on the high-pressure side, and a 90" half angle on the 
vacuum side. The glass nozzles are made from glass tubing 
which is heated and tapered at approximately a 45" half angle 
until the orifice is about 500 pm. Photographs of the discharge 
indicate the presence of a Mach disk about 1 cm below the noz- 
zle. 

Spectroscopic studies were performed with a scanning 0.2 m 
VUV spectrometer (Acton Research Corp.) using a photomul- 
tiplier with a scintillator as the detector with a temporal reso- 
lution of - 10 ns; The spectral resolution of the system was 
approximately 5 A .  The optical axis of the spectrometer was 
aligned to be approximately 2 mm below the nozzle orifice, cor- 
responding to the point of brightest VUV fluorescence. This 
was determined experimentally by measuring the fluorescence 
intensity of several bright VUV lines as a function of the dis- 
tance from the nozzle, with 1 mm resolution using a movable 
slit. The signal was averaged with a boxcar integrator, and the 
data were stored and processed in a computer. Temporal wave- 
forms were obtained with a 400 MHz bandwidth oscilloscope. 

111. SPECTROSCOPIC RESULTS 
The emission spectra from the pulsed jet discharge were stud- 

ied in the wavelength range between 35 and 550 nm using dif- 
ferent gas species in the pulsed jet and a variety of nozzle 
materials. All of the spectra presented here have not been cor- 
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Fig. 5 .  Emission spectrum at 15 KV charging voltage, taken 250 ns after 
the peak of the current pulse, with He as the gas species and using a Macor 
nozzle. 

rected for the spectral response of the detection system. With 
lighter gases such as He, spectra dominated by emission from 
the gas species in the pulsed jet were obtained. An example of 
a spectrum obtained with He and a nozzle made of Macor is 
shown in Fig. 5. All of the bright emission lines can be assigned 
to excited helium atoms and ions. To obtain this spectrum, the 
gate on the boxcar was set to a width of 75 ns and was delayed 
250 ns after the peak of the current pulse. This time window 
for observation was chosen because the spectra measured at var- 
ious time delays indicated that many spectral lines were more 
prominent during this interval. 

Using Ar and other heavier gases in the pulsed nozzle, how- 
ever, the spectra obtained are quite different. While the visible 
spectrum obtained with Ar is dominated by lines from Ar I1 and 
Ar 111, the VUV spectrum is dominated by lines from the sput- 
tered nozzle material. Fig. 6 shows the VUV spectrum obtained 
using Ar with a sapphire nozzle. The time interval for obser- 
vation is identical to that used for the He spectrum. The domi- 
nant features are aluminum and oxygen lines originating from 
the sputtering of the sapphire ( A1,03) nozzle. Sputtering is due 
to the effective momentum transfer from the gas ions to the noz- 
zle material. Typical ion kinetic energies inside the nozzle can 
be estimated to be 10 to several hundred eV. In this energy 
range efficient sputtering of the nozzle material by heavier rare 
gases is expected, whereas the sputtering efficiency of He is low 
P I .  

To demonstrate that these spectral features are indeed almost 
independent of the gas medium, Fig. 7 compares a spectrum 
obtained with Kr in the pulsed jet discharge and a spectrum 
obtained using Ar. Both spectra were obtained under identical 
conditions using the same nozzle with a 300 ns wide gate de- 
layed 200 ns from the peak of the current pulse. The more in- 
tense spectrum using Kr was taken first, and then the Ar 
spectrum. The intensity of the spectral features which are due 
to emission from the nozzle material tends to weaken the longer 
the nozzle is used due to the widening of the orifice by the dis- 
charge. Also, the sputtering efficiency of Kr is higher than for 
Ar due to their mass difference. The striking similarity between 
both spectra and the fact that all prominent features can be as- 
signed to emission from aluminum shows that consideration of 
the nozzle material is indeed crucial for the interpretation of 
optical spectra from intense pulsed jet discharges. 
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Fig. 6 .  Emission spectrum at 17.5 KV charging voltage, taken 250 ns after 
the peak of the current pulse, with Ar as the gas species and using a sap- 
phire nozzle. 
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Fig. 7. Comparison of the emission spectra using a'sapphire nozzle with 
Kr and Ar as the gas species. Both spectra were taken under identical con- 
ditions with the gate delayed 200 ns after the peak of the current pulse. 

When Macor is used as the nozzle material, the VUV spectra 
with the heavier gases are dominated with Si and AI lines. An 
example with Ar as the gas species are shown in Fig. 8. The 
time interval for observation is again identical to that of the He 
spectrum in Fig. 5. Macor has a complicated chemical com- 
position, but some of the major constituents are Si02 (46% ) 
and A1,03 (16%).  Spectra obtained with glass nozzles show 
many of the same Si lines. Spectra taken with carbon, PVC, or  
Delrin nozzles exhibit strong carbon lines. 

The high degree of excitation and ionization apparent in all 
of the spectra is a result of the initial confinement of the dis- 
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Fig. 8 .  Emission spectrum at 15 KV charging voltage, taken 250 ns after 
the peak of the current pulse, with Ar as the gas species and using a Macor 
nozzle. 

charge to the small orifice allowing very high current densities 
( - 1 MA/cm2) to be achieved. Some of the spectral lines which 
have been identified as arising from the sputtering of the nozzle 
material indicate the formation of states as much as 45 eV above 
the ground state of the neutral species. Such pulsed jet dis- 
charges could therefore have applications in spectroscopic stud- 
ies of highly excited states of materials that are difficult to 
evaporate, or in the development of incoherent VUV light 
sources for other spectroscopic investigations. 

In [ l ] ,  emission from the excimer Arf around 126 nm was 
reported using a pulsed jet discharge with similar discharge pa- 
rameters. In the work reported here, the region around 126 nm 
was extensively studied with various nozzles and at various dis- 
charge voltages, but no evidence of emission from Arf was de- 
tected. Searches for other excimer emissions, such as He?, 
Krf, ArF, KrF, and XeF, were also performed but no emission 
from these species in such a high-current pulsed jet discharge 
was observed. 

IV. PLASMA ETCHING 
Increased interest in micromechanics has created the need for 

faster etching mechanisms for a variety of materials. Recent 
work with continuous microwave discharges using a halogen 
containing gas has demonstrated a very high etching rate of sil- 
icon [9]. However, the limitations on the design of the nozzles 
for microwave discharges because of the need for impedence 
matching warrants exploration of other types of discharges 
which are more flexible in their design parameters to see if sim- 
ilar etch rates can be obtained. Chemical wet etching is either 
slow (typically about 1 pm/min) and/or has problems with 
masking, since the mask is also etched [lo].  Dry etching pro- 
cesses are often slower (0.1 pm/min) and rarely exceed 10 
pm/min [9]. The ability of the pulsed jet discharge to create 
highly ionized species motivated the study of its feasibility as 
a high etch rate mechanism when used in conjunction with a 
halogen containing gas. 

Fig. 9 shows the configuration used for etching. A stainless 
steel wire mesh was used as a test mask. The wire mesh was 
laid on top of the silicon wafer and mechanically held in place. 
The wafer was about 2 mm below the nozzle orifice. A dis- 
charge voltage of 10 KV was used as a compromise between 
etching speed and sharpness of the etching pattem. With lower 
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Fig. 9. Schematic of the pulsed jet discharge when used for plasma etch- 
ing. 

(a) (b) 
Fig. 10. Scanning electron micrographs of an etched silicon wafer. (a) 
View of the entire etched area, with a diameter of approximately 1 / 8  in. 
(b) Detail of same wafer. The distance between the wires was approxi- 
mately 35 pm. The depth of the deepest etch point was about 50 pm. 

voltages, the etching rate was slower, and at voltage of less than 
8 KV, the discharge was not stable when using NF3, as the gas 
species in the pulsed jet. At higher voltages, although the etch 
rate was somewhat larger, the etched pattem was less clear and 
some melting of the wire mesh occurred. The cleanest etching 
was observed using a sapphire nozzle, since this material was 
the most resistant against sputtering. 

Scanning electron micrographs of an etched sample are shown 
in Fig. 10. The distance between the wires of the mesh was 
about 35 pm in this case. Optical microscopy indicated that the 
etched features were about 50 pm deep at the deepest point. 
Although further optimization of the discharge parameters will 
be necessary to obtain sharper features, it is encouraging that 
by optimizing only two parameters, the discharge voltage and 
the distance between the nozzle and the wafer, the wire mesh 
pattem could be replicated in the etched wafer. 

Both NF, and SF, were used as the gas species for etching. 
Better results were obtained with NF,, possibly because the 
electron temperature is high enough that the dissociative attach- 
ment coefficient to NF, to form F - exceeds that of SF, [ 113. If 
Ar instead of a halogen-containing gas was used in the pulsed 
jet discharge, there was no observable etching; therefore, the 
etching is primarily chemical and not mechanical or thermal. 
The system was operated at 50 Hz, limited only by problems of 
heat dissipation in the nozzle. Fig. 11 shows the average of the 
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Fig. 11. Average over several runs of the deepest etch depth in a silicon 
wafer versus the time the system was operated at 50 Hz. NF, was used as 
the gas, and the discharge was operated at 10 KV. 

deepest etch depth of several experiments as a function of the 
time with the discharge system operating at 50 Hz with a volt- 
age of 10 KV. A least squares fit indicates an etch rate of ap- 
proximately 12 pm/min. With further improvements to the 
construction of the nozzles, so that the heat dissipation can be 
increased, it is anticipated the repetition rate of the discharge 
could be increased to further improve the etch rate to approxi- 
mately 100 pm/min, as reported in [9]. 

V. CONCLUSION 
The characterization of a pulsed jet discharge has been per- 

formed and possible applications to VUV spectroscopy and mi- 
cromechanics were explored. 

The applications to VUV spectroscopy include the study of 
very highly excited states of atoms and ions of low vapor pres- 
sure materials such as AI and Si. These species are produced 
by the sputtering of the nozzle material in the high energy re- 
gion of the nozzle orifice when heavy gases such as Ar or Kr 
are used. 

The feasibility of using a pulsed jet discharge in conjunction 
with a halogen containing gas as a high etch rate mechanism 
for silicon has also been demonstrated. Etch rates of about 12 
pmlmin have been achieved using NF,. 
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