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Abstract

The theory of measurement of mode-locked pulses by means of two photon
fluorescence (TPF) is generalized to include simultaneously the effects of
amplitude and phase fluctuations of the contributing modes and to include the
two photon interactions between photons of different frequency representing
higher order correlation measurements. The experimental investigation of the
two-time third order intensity correlation measured by the interaction of the
original mode-locked pulse and its delayed second harmonic is theoretically
analyzed. The unusually high contrast ratio is explained in terms of the
second harmonic power conversion coefficient and the total fractional fluc-
tuations, The above analysis is generalized to study TPF displays produced
by interaction of the fundamental laser pulse and its n-th harmonic. These
displays are shown to recover asymptotically the temporal characteristics of

the original laser beam,

* This work was jointly sponsored by the Office of Naval Research and the
National Aeronautics and Space Administration,



I. Introduction

Recently a considerable amount of attention has been devoted to the study
of mode-locked laser radiationl-z, in particular to the determination of its
temporal characteristics. One of the useful techniques for investigating
such radiation has been the intemnsity correlation measurement by means of
two photon fluorescence (TPF) or second harmonic generation (SHG)3. The re-~
solution limit of the techniques is sufficient to measure pulse durations in
the picosecond region, The measurement method and the associated problem of
interpreting the correlation data have been well treated theoretically by many
workers in the fie1d4-7, However, interpretation of the TPF trace still poses
considerable ambiguities and in addition the technique per se has a fundamental
limitation in that it cannot detect the phase information inherent in the laser
radiation, That is to say it cannot detect the asymmetric time dependence of the
intensity of mode-locked lgser pulses, if any exists, as pointed out by Webers,
It was with precisely this limitation in mind that Webera-9 proposed several
feasible experimental schemes by which to measure the third order intensity
correlations, In fact, a special subset gf such quantities, namely the two-
time third order correlations, was demonstrated experimentally by Rentzepis
and Duguaylo. They obtained, by judicious choice of the dye solution, a TPF
trace with an unusually high contrast ratio, which resulted mainly from the
cross correlation between fundamental photons and their second harmonics. The
significance of these kinds of experiments was discussed by Blouat and Klauderll,
who pointed out that the second and third order intensity correlations are suf-
ficient to yield the exact nature of input laser beams, Their analysis, and

for that matter most of the existing theories of measurement, are useful only

if the mode-locked laser radiation is feproducible, i.e, free of fluctuationus,



This is often not the case in practice, Inherently present in the Q-switched
wmode-locked laser radiation are the phase as well as the amplitude fluctuations
for all modes due to the mode competition, temperature fluctuations, the host
medium induced frequency chirping12-13, etc, As is well known, these fluctua-
tions are of great importance in the nonlinear interaction of radiation with
matter in general14 and also play an important role in determining the nature
of mode-locked laser beams as discussed in detail by Griitter, Weber, and
DEndlikers%s Thus, the effect of fluctuations on the intensity correlation
measurement warrants an extemsive treatment,

In addition, a detailed analysis of correlations higher than the second
order is relevant in view of the associated experiments either performed or
proposed. From a purely theoretical point of view, the importance of experi-
ments involving higher order intensity correlations can be seen from the fol-
lowing intuitive argument16’17. Consider a mode-locked laser intensity, I(t)
having its maximum amplitude at time t=0, Typically, an experiment investi-
gating the (n+l)-th order correlations consists of measuring the time integrated
values of the quantity In(t)I(b+T). As we go to higher order, i.e, as n is
increased, the time dependence of In(t) approaches that of a delta function.
This is a quite general result valid for a broad class of fields including fluc-
tuations, provided the field has a dominant maximum, Thus it becomes obvious
that the time (T) dependence of the measured correlations duplicates that of
I(t) asymptotically, which shows that by measuring higher ordef.correlations
the temporal characteristics of the laser radiation can be determined directly,

The purpose of this paper is to extend the existing theories of the in-

tensity correlation measurement of mode-locked laser beams by taking into ac-

count the effects of phase as well as aﬁplitude fluctuations and by generalizing



our analysis to those multiple photon absorption processes susceptible to ex-
perimental verification, namely the cross correlation between fundamental pho-
tons and their harmonics., In Section II we introduce a general mode of de-
scription for the TPF experiments that will allow us to discuss correlations
higher than the second order. In addition the two-time joint probability dis-
tribution function for the field is used to calculate the effect of fluctua-
tions on the time (spatial) dependence of the usual second-order two-photon
induced fluorescence and on the signal to background ratio for the fluorescence,
In Sec. III the third-order intensity correlation function, as measured by
Rentzepis and Duguay, is analyzed in great detail. 1In Sec, IV the whole analysis
is generalized to n-th order correlation measurements and the main conclusions

of this work are drawa,

II, General Mode of Description

The optical electric field is writtem, in the usual manner, as
e =27 @ +:5Pw W
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The field is considered as a stochastic process, so that the complex mode
ig

amplitudes, o =a.e k , are determined by the mode distribution of the

field, P([ak},t), We may thus introduce the variance of the k-th mode as

one of the fundamental characteristics of the field, viz,,
2 2
o = (Iak (dk)l ) : (2)
Equivalently, we may define the phase and amplitude variations of the k-th

mode as

(Aak)2 = {(a,- (ak>>2) (2a)



(Acak)z = {9, - (cpk>)2) (2b)

where the angular brackets denote the expectation value of the quantities,
From the outset, we take the phase of each mode to be locked at a mean value,
which can be put equal to zero without any loss of generality, However each
phase is allowed to fluctuate around this zera mean value, thereby taking
into account the temperature fluctuations in the medium, the vibration of
resonator mirrors, etc,

A simple experimental configuration for measuring TPF is shown in Fig. 1.
Mode-locked laser radiatiom is split in half by a mirror and impinges col-
linearly with its image on a suitable dye cell., The resultant field inside
the dye at position z is then given by E(z,t) - E(z, t+7); T is the time delay
between the two beams and is given by the optical path difference between the
two and the minus sign is due to 180°phase difference, The general situation
we shall wish to describe arises when the two pulses incident om the dye solu-
tion are superpositions of the fundamental beam and its n-th harmonic.

The time integrated fluorescence induced by the incident field can be

expressed as

F=[da = MCkyyeennky) S o cx: o Ve (Le, (1)3: (1)3’1': (1) (3)
-0 kl"'k4 2 3 4

Here T denotes the cross-section for two-photon absorption at the frequencies
involved. Since the incident field consists, in general, of a superposition

of the fundamental beam with its n-th harmonic, the frequencies involved may
be widely different, so that T cannot, in general, be taken comnstant, (as

it is for the conventional TPF where the incident beam is just the superposi-
tion of the fundamental beam with a delayed replica of itself.,) The time de-

pendence of the incident pulse is reflected in the fluorescence trace via the

E]



time delay between the two pulses at a given point in the dye solution. In
particular, for the case when one pulse is the fundamental and the other is
its n-th harmonic, the fluorescence, ¥ , is proportional to the time inte-
gral of the two-time (n+l)-th order intensity correlation function of the
field, viz., (E-(t+¢)[E-(t)E+(t)]n E+(t+7)) J

We consider now the simplest type of two-photon fluorescence experiment,
where the mode-locked laser beam interacts with itself in a fluorescent dye.
Our purpose is to obtain an explicit expression for the time dependence of
the fluorescence trace as a function of fluctuations., We can then compare
this time dependence to the assumed time dependence of the incident pulse and
determine the effects of fluctuations. In édditioq we shall later compare the -
expression to similar expressions we shall derive for the more general case
of the fluorescence trace resulting from the interaction of a pulse with its
n-th harmonic,

The problem of the effect of fluctuations of a mode-locked laser beam on
non-linear optics experiments of this general nature have been considered in
detail, by Grﬁtter, Weber, and DEndlikers’ls, In particular, it is shown in
ref. [5] that the effect of random phase fluctuations is to reduce the height
and change the shape of the central maximum of the second order intensity cor-
relation function of the field; in ref. [15] the effects of phase and amplitude
fluctuations on the normalized second moment of the intensity distribution
function for the field are considered and it is shown that its‘;élue degrades
as fluctuations increase, We shall now phrase these results in the language
of the TPF experiment in order to provide a basis for comparison with our re-

sults for higher order correlations in later sections. If one inserts the

total field in the dye solution, E(z,t)-E(z,t+T) into Eq. (3) and evaluates
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the resulting expectation values using the two-time probability distribution

unction for the field (see Appendix I), the result is

rh
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Eq. (4) is a general expression for TPF, including the effects of the
phase and amplitude fluctuations, which are contained in oz(t) and 02(t+¢).
(Note that for the ideal case of cz(t) = 02(t+¢) = 0, the above gives
F(7=0)/F(v=) = 3;1.)

The discussion of Eq., (4) becomes much more explicit if we specify at
this point the characteristics of the input field,.i.e., if we modelize the

field., We assume:
(E()) = & exp - [1 wt + $(AQc) 2 (5)

This is consistent with the model of mode-locked laser radiation based on
. , . 20
the regenerative pulse generator, first considered by Cutler” and recently

1 and Kuizinga and SiegmanZI. They showed that

elaborated by DeMaria et al
the self-consistency requirement at a steady state for mode-locked laser
pulses can be satisfied by an optical f.ieldz‘2 having an average Gaussian
spectral profile,

We further assume that the distribution function describing, this steady

state optical pulse is factorizable into functions of amplitudes {ak} and

phases {¢,}. Then the k-th mode variance.can be written as

ol =)t £ | (6)



where

£, = (0030 %/a)%) + [1-(eos @)% - (sin g )% (6a)

fag [(Aak)z/(ak>2] + (Aq&)z ; for small Acpk and (@k) =0 . (6b)

represents the total normalized variance resulting from amplitude as well

as phase fluctuations, Although the amplitude contribution is rather small

for strong optical fields, the phase fluctuations can be substantial due to

frequency chirping as shown by Sveltol3. If we additionally assume that the
normalized variance fk has a unifoFm value £ over the entire field spec-

trum, we get

o(t) = oP(t+r) = SOZf (7)

Upon inserting Eq. (5) and Eq. (7) into Eq. (4) and carrying our the time

integration, we obtain

- ;
#(r) = 71+ 270D g 7 g 1 300N (@)

Note that the time difference, T , can easily be transcribed into a spatial
argument of the fluorescence pattern,

It is clear that the results derived earliers’15 regarding the effects
of fluctuations on nonlinear interactions of a light beam with itself are
implicit in Eq. (8). The presence of fluctuations introduces a new term in
the fluorescence expression having a different time scale, Hence the time
dependence of the TPF pattern undergoes a rather drastic change-from a Gaussian~
to a non-Gaussian nature, (See, Fig 3) If we compute the contrast ratio as
a function of fluctuatioms,

11

n

F(7=0) / F(r=w=) .
(3+12J7 £] / [1 + 8,2 £] o (9)



we see that the presence of fluctuations causes the coatrast ratio to degrade
from a value of 3:1 for £ =0, to a value of 1.5:1 for f = ® ., This cor-
respoads to the transition from perfectly mode-locked radiation to a Gaussian
or thermal field with the phases randomly distributed in the interval (0, 2m).
We have plotted in Fig., 2 the contrast ratio versus the total fractional fluc-
tuation f. Recently, Picard and Schweitzer7 and Harrach4 showed that the
ratio depends in a complicated but interesting way on the degree of mode~-locking
in the incoming laser pulses, In their analysis, oscillating modes were di-
vided into two portions, namely the central group having a common phase and

the two outer wings having random phases., The degree of mode locking was de- -
fined as the ratio of the width of central group to the total bandwidth, The
measured values of the ratio that lie between the two limits 1.5 and 3 could
thus be explained in terms of this degree of mode-locking. Eq. (9) indicates
that the ratio depends significantly on the fluctuations as well, rendering

the interpretation of experimental results more complicated. A few comments
are due at this point, The assumed phase fluctuation (A(p)z provides one way
of describing imperfectly mode-locked laser radiation. Although this model is

20 and of Kuizenga and SiegmanZl, it is

compatible with the analysis of Cutler
not yet clear which better approximates the actual laser pulses: the degree of
mode-locking, the domain model or the fractiomal fluctuation £. It should be
emphasized however that the uniform £ is introduced in our analysis only for
the mathematical simplicity and is not an essential assumption."Thus, by pro-
perly adjusting the k-thlmode variance, akz, we can not only incorporate the

other two models for laser pulses in the deécription ofITPF but also can in-

clude the effect of fluctuations at the same time,
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III. TPF of Third Order Correlations

In this section we consider the two-time, third order intensity correla-
tion functions of the field, Measurements of third order intensity correlations
by means of a third harmonic generation is treated in detail by Pike and
Hercherzs, The third order correlations that are comnsidered in this section
arise from the interaction between the fundamental laser field and its second
harmonic and were first demonstrated experimentally by Rentzepis and Duguaylo,
Subsequently, Weber proposed several schemes to measure the two and three time
third order intensity correlation functiomns, so that the phase information of
the field could be recovered, We now analyze in detail the type of experiment
performed by Rentzepis and Duguay and indicate precisely what information can
be obtained from such an experiment.

The experimental scheme is as depicted in Fig. 4. 4 laser pulse, say
1.06pm Nd:glass, is passed through a nonlinear material like KDP and frequency
upconverted to ,53um., The radiation field emerging from the crystal then con-
sists of a superposition of the fundamental frequency pulse and its in-phase
second harmonic. These two pulses are next separated in time (or distance) by
passing the beam through another material such as bromobenzene, This resultant
beam is then used in the normal TPF configuration to produce a fluorescence
display, By choosing a dye solution with transition frequency greater than
twice the fundamental 1,06um frequency, Rentzepis and Duguay confined the two
photon absorption processes to those involving two second harmonic photons or
one second harmonic and one fundamental photon, This has an interesting ef~-
fect on the TPF display as will become clear later on.

We proceed with a theoretical consideration of second harmonic generation

(SHG), including the effect fundamental beam fluctuations have on the second



harwmonic beam, We then impose the Gaussian model on the incoming fundamental
beam, calculate the second harmonic explicitly and derive an expression for
the TPF display caused by the fundamental-second harmonic interaction in the
dye solution,

The c-number second harmonic complex modefamplituae ap- with frequency

wp is given in terms of the fundamental modes by2

< hw ) 5 u)de
¢ =yZao Sip,m);ye=in| —2 L 10
I (p,n) ; v v cn<wp> (10)

where d and n represent the effective nonlinear coefficient and the index
of refraction of the medium respectively. The gain profile factor

i Ak(p,n)L

S(p,n) = [e -1]/ i[Ak(p,n)L] (11)

is given in terms of the crystal length L and the phase detuning factor

Ak(p,n),

Be(p,m) = k(W) = k(@) - k(® -w) (12)

and describes the net effective interaction among these three modes during
the transit time., To first order in the index of refractiom, it can be easily
shown that S(p,n) is independent of w_ and thus can be taken out of the
summation in (10),

We now specify the fundamental beam to be of the Gaussian form with
uniform normalized fluctuation, i,e,, a.common fractional amplipyde variance
(Aa)z/(a)2 and the same phase variance (A:p)z . (See Eq. (7).) Then the

expectation value of the second harmonic amplitude is given by

Gy = Va1 [ aw exp ~([mu)?/2080) 1+ 0 -0-0)%/2¢80) 21} S(p,m)

92.-1 2 2 inL(wBZwo) .
= v[2/7(8Q) "] “exp "[(wp‘Zwo) /2(¥Z28Q) "1 {[e ~ -lll[mL(wp'?-wo)]}

C L e X (13)



where we have replaced the discrete summation over modes by an integral,
Note that the resulting harmonic spectral profile is also a Gaussian, aside
from the factor S; with half width twice that of the fundamental, Taking
the inverse Fourier transform of Eq, (33) we obtain the time domain repre-

sentation of the second harmonic pulse as

-1 © -iw €t
(Eh(t)> = (2m) fmdwp e P (ap)
-2iw t :
=€ e © (erf (AQt) - erf [AQ(t-xL)]) (14)

h
The resolution problem associated with the second harmonic generation and
the effect of crystal length in its generation was considered explicitly by

P

X 26 . s
Mathieu and Keller”™ , There are two obvious limiting cases for the above

time-dependence of the second harmonic pulseza. (See Fig. 5) The one we are’
interested in is (AQu«L) << 1. 1In this limit we can expand erf[AQ (t-xL)]

in a Taylor series centered at A {Qt and obtain

-2iw t 2 o
€ @) =¢e ©° @/ m PR 2 aauy™ H (80t) Cas)

w=0
where Hm denotes the m-th order Hermite polynomial, In this limit the har-
monic pulse shape resumes a Gaussian form with half-width equal to one half
that of the fundamental pulse, Physically, this means that the gain profile
is broad enough to convert the entire fundamental spectrum into its second
harmonic. 1Ia the process, the width of the harmonic profile is doubled, so
the time domain representation is halved, The cross correlation between the
fundamental and the second harmonic will now yield the maximum information on
the original mode-locked laser radiatiom.

To obtain the variance of the second harmonic mode, obz we begin by
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expressing it in terms of (Aap)2 and (AQP)Z, viz,

cpz <|dp - <“p>l2>

(Aap)2 + (ap>2 [1 - {cos @p)z - (sin wp)zj (16)

Now, the amplitude and phase fluctuations can be expressed in terms of those
of fundamental modes from Eq, (10), which can be rewritten as

a_ exp(-ip ) = S za a exp - 1 + 17
> p( e Y (p)n n dp-n XP N <Pp_n) (17)

Since the phase fluctuatioms in the fundamental moées are modelized to have

a common value (Acp)z, it follows immediately from Eq, (17) that
2 2
(A<PP> = 2(A¢) (18)

Also, the expectation values of ap and ap2 follow readily from Eq. (17):

a2 = v 5(p) z (a_ ) :
=YS() Z e )+ e ) (19)
@5 = Vs @IE G, e e )
+2z (an)<ap_n) (Aap/z)2
+63 (G a2y - ) () D))
+ (04) h (20)

where we have used the factorizability of the P({an},t) function to obtain Eqs,
c . 2 2 2 .
(19) and (20). Thus, using the relation, (an ) = (an> + (Aan) , We obtain

from Eqs, (19) and (20) °
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Now, using Eqs. (21), (19) and (16), and replacing the discrete summation

over wodes in (21) with an integral, we obtain

— 2 £
=" s , (22)
with
£' = 2{(2/7 )2 [(8a)2/{a)?] + [1-(cos @) - (sin 021}
L
~ 2(2/m% [(8a)%/a)?] + (bo)?) (23)

which can be compared with Eq. (6). The effect of second harmonic generation
is then to increase the magnitude of the fluctuations by about 50%.

We now proceed to calculate the TPF display produced by the cross cor-
relacibn of the fundamental with the narrow second harmonic, The total radia-

tion field entering the TPF dye is

E(t) = E;(t) + Ef(e) + E (t) + E(¢)

=2 [y e (1) +a (1)] +Z [oe (L) +a e"(l)l (24)
k p PP
The determination of the TPF display begins from Eq. (3). Upon inserting
Eq. (24) in Eq. (3) a total of 256 terms ensue, Fortunately a substantial
reduction occurs due to the rapid oscillatory nature of many terms. A4 further
reduction results if we choose, following Rentzepis and Duguéy,’a dye solution
whose energy gap is wide enough to exclude absorption of two photons in the
fundamental frequeancy range. So putting ﬂ(wo,wo) =0, ﬂ(wo,Zwo) =1,

ﬂ(Zwo,Zwo) = 1 in Eq, (3) we obtain
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+ (|5 1P [o, o) B [B (e 1B, (3 D04 E, (03 P JE, (24 [ D1 (25)

An additional simplification of Eq. (25) results if the fundamental and second
harmonic pulses are separated from one another by a time delay, Ty greater
than the individual pulse widths, This was the case in the experiment of

Rentzepis and Duguay. Then the contribution from the third and fourth terms

-(aQT ) ¢
in Eq. (25) is proportional to e and hence can be neglected.
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Each term appearing in Eq. (25) represents only a portion of the entire
radiation field inside the dye solution, and the ensemble average can not be
obtained by using the corresponding /~function. Instead, the average values
should be calculated directly from the field distribution function P((ak},t).
Since the details of calculations are of no im}ortance to us at this point,
we relegate it to Appendix II and merely quote the results here, For the
uniform normalized amplitude variance and the common phase fluctuation we as-

sumed for the input laser beam we can obtain

(le, (&) 1% (B, ()% + s5'e 2|(E, ()2 + (b (26)

([eg(e) |?[E, (0+7) | 2= €20 |2 e, (7)) |%aze 2| (B, (£+7)) 12+ef'ah2 [ (e)) |2

+ (o (27)
(B, (0 12 |2, (247) |2)=] EL () 2] E (7)) |2+zf'e°2[ £ (£)) l2+|(Eh(t+'T)) 14

-2iw T

v2e'e Mo 0 @ (ONEKEM) + e + (@) (28)

Upon inserting Eqs. (26), (27), (28) and (15) ia Eq. (25) and carrying out the

time integration we obtain up to the first power of AQXL

2 2 2
F()=F, [(2/[3)a3 T p3a (80 "y 13 2B (000 VB2 [28(Br2)+2E (84 [2)],  (29)

where B 1is the power conversion coefficient for second harmonic generation

and is defined by

2 : (30)

2
= BE

b 2
7 (AQnL) Eh

We have derived in Eq, (29)_the expression for the TPF display caused by the

two-time third order intensity correlation

function of the type measured ex-
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perimentally by Rentzepis and Duguay, Since the power conversion factor, B,
and the total normalized fluctuatioms, f and f', are small in most cases, it
is spparent that the signal to background ratio for this third order cor-
relation is better tham that attained by conventional TPF, A quantitative
estimation for the fluctuations can be obtainéd by applying Eq. (29) to the
experimental results of Rentzepis and Duguay. They report a second harmonic
conversion coefficient B = ,001 and the contrast ratio of approximately 10,
Substituting these values in Eq. (29) we obtain f =:f'='(A@)2 = 005, since
the fractional amplitude fluctuation can be neglected for strong radiation
fields, For purposes of comparison, let us meglect the fluctuation and insert
5 = .00l in Eq. (29). Then we obtain easily the value for the contrast ratio,
R= 5X 104. Thus, normalized fluctuations of the order of one half percent
cause the contrast ratio to decrease by several orders of magnitude, We note,
however, that even with the presence of fluctuatioms, the signal to background
ratio is considerably higher for this third order correlation technique than
for the coaventional TPF,

The role played by the fluctuations is essentially the same for this type
of TPF, as for the coanventional TPF, i,e., it increases the background fluor-
escence and obscures the signal portion of the display, However, by judicious
choice of the experimental situation, one éan cause the fluctuations to be sup-
pressed to a great extent. In the TPF configuraéion for the'figld consisting
of the superposition of fundamental and second harmonic pulses one can select
only the fundamental pulse in the one arm by means of polarization, interfer-
eace filter, or spectral displacement prism, (See Fig, 4) This together
with the dye solution with transiﬁion frequency‘greater than the twice funda-

mental frequencies can virtually confine the TPF display to the cross corre-
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lazion between the fundamental and the second harmonic beams, i,e, ﬂ(wo,wo) =
ﬂ(Zwo,Zwo) =0, ﬂ(wo,Zwo) =1, 1In this case Eq, (29) reduces to

-2(a0m) 2

F(v) = F [(1/ 3) e + 207 £+ 8f'] (31)

.

It is quite evident from Eq. (31) that the background fluorescence is even
more reduced than above and that the time dependence of the display reflects
the Gaussian nature of the input beam, although the time scale is different
by the factor 2/3. (See Fig. 6) These facts clearly point the way to con-
sidering cross correlations between the fundamental and even higher harmonics
in hopes oi recovering the time dependence of the original mode-locked laser

emission directly in the time domain,

V. Generalizations and Conclusions

In this section we generalize our analysis to calculate the TPF display
caused by the interaction of the fundamental laser pulse with its n-th har-
moaic. 1In view of the success of nonlinear optics researchers in growing
crystals with increasingly large nonlinear susceptibilities, and given the
present ready availability of extremely intense mode-locked lasers, one can
envision the possibility of generating harmonic short pulses of sufficieat in-
tensity higher than the second order, In such an event the higher order cross
correlations would become quite practical,

The amplitude of the n-th harmonic mode with frequency wp" can be con-
n
structed from the fundameatal modes via a straightforward generalization of
Eq. (10):

(32)
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Y is the corresponding conversion coefficient for n-th harmonic gen=
a

erstion and we have confined ourselves, for simplicity, to the case where the
phase detuning, Ak, is zero, i.e. S = 1,

We can similarly easily generalize our earlier result for the fluctua-

tions ¢ I the second harmonic to obtain (See Eq. (23))

o3 2 = (a )2 fn : (33)
pn pn °

where the fractional fluctuation is givem by

2,1 -2 2 .
o=l g G 2" = z (aa, )%a, donlay  Ma_ ., |
R P m(, 6D k.. AR AR WP ST

ky <ok o
<aké>”'<ap-(k1+k:2 ... +k;1_1>>] (34)

Here, m({k},{k'}) denotes sum over all possible pair combinations between
one member in group {k} and another in {k'}. Using once more the Gaussian
model for the incoming laser pulse, we can calculate the expectation value

of the spectral profile of the n~th harmonic:

(a )= [ dak ...dk X

P )>

fa, )...€a a
T o1 i koog! op (b otk

(270080 2] F exp-[(w. -nw Y2/2¢® 80y o (35)
P, © )

Taking the inverse Fourier Transform of Eq, (35) we find the time dependence

of the n-th harmonic to be

-nlwote-%n(AQt)z

<E§“>(:>) = eé‘” e (36)
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And now making the same assumptions that were used to arrive at Eq. (31), we
essily calculate the fluorescence display caused by the interaction of the

fundamental and its a-th harmonic to be
- e
F(T) = F_((2+1)"F exp-[a(aQ7T) 2/ (n+1)] + A(E+ £ 0 F)) (37)

The aone equation clearly shows that the time dependence of the TPF display
asymptotically approaches that of the original laser beam, which in this case
is a Gaussian pulse, (See Fig, 7) 1In addition, it is clear that the back-
ground noise terms are due solely to fluctuations present in the original beam.
In conclusion, we have analyzed in this paper the experiments for measur-
ing the intensity correlations of a mode-locked laser radiation. 1Ia doing so
we have generalized the TPF scheme to incorporate the two-time n-th order cor-
relations, In the whole analysis the effects of fluctuations present in the
laser radiation are taken into account in an explicit and consistent way, We
have shown that the fluctuations affect the contrast ratio of the ordinary
TPF significantly and that they complicate the time dependence of the signal
portion of the pattera., Finally we have pointed out the interesting theoretical
possibility that by measuring the TPF trace caused by the cross correlation be-
tween the fundamental and harmonic beams in a dye solution properly chosen one
can practically recover the temporal characteristics of the input laser pulses.
This argumeat holds true no matter what the original shape of the laser pulse
is, since ideally the n-th order harmonic approaches a delta function as n
grows large, 1In practice however, the experimental realization of this analysis
is limited by the difficulties encountered in generating higher order harmonic
pulses with ultrashort duration. This puts rather stringent requirements on

the material properties as was discussed in Section V.
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Appendix I

In this appendix we derive Eq. (4) in the text, The total field in the

1
dye is given by E(z,t) -E(z,t+7). Thus, as shown in great detail elsewhere 8

we may obtain the expression for TPF from Eqs. (1) and (3) as

@
cr P 4 4 - = 4
F(7) = ¢ e [KE@) [ D+(|ECe+) | )+4(E™ (£)E™ (er)EF (e+T)ET (1)) (1-1)
-0
The ensemble average of the quantities appearing in Eq (I-1) can be compactly
described, including explicitly the effect of fluctuations by means of the
one-time and two-time quasiprobability distribution function of the field.
The two-time joint probability functionlg for the field is defined in terms

of the probability function for the mode amplitudes, P({a, },t) by
2 2 2
e €, = [ a (e, JP({e },2) 67 (&) E e, (11671, E akﬁk(?>] (1-2)

with

€, = E o (I-3)

i ksk(i>

denoting the total complex field amplitude at ti and z_ ., The expectation

i

value of a measurable quantity rn<sl,az> can then be given in terms of

WE|,E,) by
(mee,,e,)) = [ e a’e, mee e, we, e (1-4)

For fields consisting of many modes, which is the case for mode-locked
laser pulses, we can invoke an argument similar to the central 1limit theorem

and construct, to a good approximation, the two-time field distribution Ffunc-

2

tion in terms of its first two moments in the rotating wave approximation, viz,

|2 - ag g} - 2%l

1 1 2] (I-5)

h%&l,ﬁz) = h-l exp - [15112 + |§2
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Here the dimensionless variable
g = (B -Gz, e N/ M o)) 5 1=1,2. (1-6)

represents the departure of the fluctuating total field amplitude 3i from

its mean value at ti’ scaled over the total effective variance at time ti
of the field

02(:.)

i

= e (e 12 (o (e )= Ca (2,003 (1-7)
£ . .

Il

2 2
- IXCRE A CY
and the parameter
2

£t =1 - a)? (1-8)

with
e ;

a = [E 2. (208 (8,)) 0, (8)) o, (£)1/0(E)) o(t,) (1-9)

representing the degree of correlation of the field between tl and t2.

N is the normalization constant and is given by N = [ﬂAG(tl) G(t2>]2 .

By combining Eqs. (I-1), (I-4), and (I-5) one can easily obtain Eq, (4) in

the text.
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Appendix II

The ensemble average of some functions of
pulses can be calculated directly from the wode distribution funct

To show this we derive Eq, (26) in detail here,

can be expressed in terms of its modes as

Eh(t> = E c Ek<1)

Thus, we have

1 ) 1
kpseede, €1 % %3 5 ™ 2

_ Ve % ¥%
= Z @ o @ o e (1) e (1) 3“3(1) gkA(l)

fundamental or second harmonic
ion P({ak},t).

The harmonic pulse, Eh(:),

(II-1)

(1I-2)

By usiang the P({ak),t) - function we can take the average value of Eq. (II-2)

and obtain

ey = ¢ e S o) s )

1
kl"" k, 1 3

(1) [ (1)

(1I-3)

As in Section II (See Egs. (19),(20)) the average values of the right hand

side of Eq. (II-3) can be written as

) (a L )
b
kphenk, k) ey iy,

T o, Mo, Yea* Y™ )
kps.nk, k" TR TR TRy

Z (e ) - oy )P oy e )+ e )

k1 4 l 1 3

2 2 :
T oy 1D - ey M Coy M )
1% 1 . 2 4

ot

-+ C9(04)

(1I-4)
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Upon inserting Eqs. (II-4) and (II-1) in Eq. (II-3) and making use of the

rotating wave approximation we obtaina

Uz, ) = [+ 62 02|, (e)) ]2 (11-5)
kM

1

By replacing sz
1

follows from Eq. (II-5), Eqs. (27) and (28) can be derived in a similar way,

with the normalized fluctuation- £' (see Eq. (23)) Eq. (26)
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An experimental coniiguration for observation of two photon fluorescence.
Incident beam is split in two halves which travel through the fluorescent
d¢ye collinearly., The dye fluoresces when two pulses overlap in the dye,
The fluorescence intensity dependent on the product of the two beam

es,

His

intensic
Conventional TPF contrast ratio R is plotted as a function of fractional fluc-
i

tuatioa £, R approaches 3 and 1.5 at either extremes when £ = 0 and o

Normalized integrated fluorescence intensity is plotted as a function of
delay between the pulses for differeat values of total fractional fluctua-
tions £, Signal to background ratio is a function of £. The explicit tem-
poral behavior and the width of the TPF trace can be compared with the ac-
tual pulse shape I(t), .

An experimental configuration to measure third order inteasity correlatiomn
with TPF of the fundamental pulse and its second harmonic, The same con-
figuration can be used to measure higher order intemsity correlatiom by
using appropriate harmonic generation crystal and frequency selective
element,

Plots of normalized temporal behaviour of second harmonic intensity as
function of the total dispersion over the fundamental spectral bandwidth
(xAQ1L). The second harmonic pulse width can be compared with the original
fundamental pulse. The second harmonic pulse becomes wider as dispersiomn
increases resulting ia imperfect phase matching over the .fundamental
bandwidth,

Plots of normalized integrated fluorescence intensity represeating a third

order correlation for difference fractional fluctuations,
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?lot of pulse width normalized with original pulse width and signal to

background ratio as a function of order of correlation., The contrast ratio,

- -=
L ti(a + n%))/ti(n+n®)} follows from eq. 49, where £

F(o) /7 (=) ={]

or £ = ,005 the ratio is in agreement with

trf

is approximated to be nf,

the experimental observation of Rentzepis ‘and Duguay, Signal to background

s for higher order correlation due to the increase in fluc-

w

ratio decreas

tuations of the harwmonic,
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